Skip to main content

Text parser.

Project description

buildstatus coverage

About

A text parser written in the Python language.

The project has one goal, speed! See the benchmark below more details.

Project homepage: https://github.com/eerimoq/textparser

Documentation: http://textparser.readthedocs.org/en/latest

Credits

  • Thanks PyParsing for a user friendly interface. Many of textparser’s class names are taken from this project.

Installation

pip install textparser

Example usage

The Hello World example parses the string Hello, World! and outputs its parse tree ['Hello', ',', 'World', '!'].

The script:

import textparser
from textparser import Sequence


class Parser(textparser.Parser):

    def token_specs(self):
        return [
            ('SKIP',          r'[ \r\n\t]+'),
            ('WORD',          r'\w+'),
            ('EMARK',    '!', r'!'),
            ('COMMA',    ',', r','),
            ('MISMATCH',      r'.')
        ]

    def grammar(self):
        return Sequence('WORD', ',', 'WORD', '!')


tree = Parser().parse('Hello, World!')

print('Tree:', tree)

Script execution:

$ env PYTHONPATH=. python3 examples/hello_world.py
Tree: ['Hello', ',', 'World', '!']

Benchmark

A benchmark comparing the speed of 10 JSON parsers, parsing a 276 kb file.

$ env PYTHONPATH=. python3 examples/benchmarks/json/speed.py

Parsed 'examples/benchmarks/json/data.json' 1 time(s) in:

PACKAGE         SECONDS   RATIO  VERSION
textparser         0.10    100%  0.21.1
parsimonious       0.17    169%  unknown
lark (LALR)        0.27    267%  0.7.0
funcparserlib      0.34    340%  unknown
textx              0.54    546%  1.8.0
pyparsing          0.68    684%  2.4.0
pyleri             0.88    886%  1.2.2
parsy              0.92    925%  1.2.0
parsita            2.28   2286%  unknown
lark (Earley)      2.34   2348%  0.7.0

NOTE 1: The parsers are not necessarily optimized for speed. Optimizing them will likely affect the measurements.

NOTE 2: The structure of the resulting parse trees varies and additional processing may be required to make them fit the user application.

NOTE 3: Only JSON parsers are compared. Parsing other languages may give vastly different results.

Contributing

  1. Fork the repository.

  2. Install prerequisites.

    pip install -r requirements.txt
    
  3. Implement the new feature or bug fix.

  4. Implement test case(s) to ensure that future changes do not break legacy.

  5. Run the tests.

    make test
    
  6. Create a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textparser-0.23.0.tar.gz (12.3 kB view hashes)

Uploaded source

Built Distribution

textparser-0.23.0-py2.py3-none-any.whl (8.4 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page