Skip to main content

Text parser.

Project description


A text parser written in the Python language.

The project has one goal, speed! See the benchmark below more details.

Project homepage:



  • Thanks PyParsing for a user friendly interface. Many of textparser’s class names are taken from this project.


pip install textparser

Example usage

The Hello World example parses the string Hello, World! and outputs its parse tree ['Hello', ',', 'World', '!'].

The script:

import textparser
from textparser import Sequence

class Parser(textparser.Parser):

    def token_specs(self):
        return [
            ('SKIP',          r'[ \r\n\t]+'),
            ('WORD',          r'\w+'),
            ('EMARK',    '!', r'!'),
            ('COMMA',    ',', r','),
            ('MISMATCH',      r'.')

    def grammar(self):
        return Sequence('WORD', ',', 'WORD', '!')

tree = Parser().parse('Hello, World!')

print('Tree:', tree)

Script execution:

$ env PYTHONPATH=. python3 examples/
Tree: ['Hello', ',', 'World', '!']


A benchmark comparing the speed of 10 JSON parsers, parsing a 276 kb file.

$ env PYTHONPATH=. python3 examples/benchmarks/json/

Parsed 'examples/benchmarks/json/data.json' 1 time(s) in:

textparser         0.10    100%  0.21.1
parsimonious       0.17    169%  unknown
lark (LALR)        0.27    267%  0.7.0
funcparserlib      0.34    340%  unknown
textx              0.54    546%  1.8.0
pyparsing          0.68    684%  2.4.0
pyleri             0.88    886%  1.2.2
parsy              0.92    925%  1.2.0
parsita            2.28   2286%  unknown
lark (Earley)      2.34   2348%  0.7.0

NOTE 1: The parsers are not necessarily optimized for speed. Optimizing them will likely affect the measurements.

NOTE 2: The structure of the resulting parse trees varies and additional processing may be required to make them fit the user application.

NOTE 3: Only JSON parsers are compared. Parsing other languages may give vastly different results.


  1. Fork the repository.

  2. Implement the new feature or bug fix.

  3. Implement test case(s) to ensure that future changes do not break legacy.

  4. Run the tests.

    python3 -m unittest
  5. Create a pull request.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textparser-0.24.0.tar.gz (13.5 kB view hashes)

Uploaded source

Built Distribution

textparser-0.24.0-py3-none-any.whl (8.3 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page