Skip to main content

tf_conceptual_graph

Project description

Build Status

tf_conceptual_graph

Create tensorflow(1.x) conceptual graph. Conceputual graph is not aimed to reconstruct a neural network. The main purpose of this conceputual graph is for treating a neural network as a heterogeneous graph. Once we can treat neural networks as heterogeneous graphs, we can apply graph neural network methods for them to predict inference results from trained neural networks. From the view point, we can optimize neural network structures.

Installtion

$ pip install tfcg

Usage

read a graph_def object from object api(sess.graph_def)

import numpy as np
import tensorflow as tf

import tfcg

with tf.Graph().as_default() as graph:
    model = tf.keras.Sequential()
    x = np.random.rand(128, 28, 28, 3)
    model.add(tf.keras.layers.Conv2D(16, 3, input_shape=[28, 28, 3], name='conv1'))
    model.add(tf.keras.layers.Conv2D(32, 1, name='conv2'))
    model.add(tf.keras.layers.Conv2D(64, 2, name='conv3'))
    model.add(tf.keras.layers.Conv2D(128, 2, name='conv4'))
    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(32, name='dense1'))
    model.add(tf.keras.layers.ReLU())
    model.add(tf.keras.layers.Dense(16, name='dense2'))
    x_p = tf.placeholder(tf.float32, [None, 28, 28, 3], name='input')
    out_p = model(x_p)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        o = sess.run(out_p, feed_dict={x_p: x})
        _ = tf.identity(o, name="output")
        tf.io.write_graph(sess.graph, './', 'train.pbtxt')
        parser = tfcg.from_graph_def(sess.graph_def)
        parser.dump_json("conceptual_graph.json")
        parser.dump_img("output.png")

read a graph from a file, After dumpping a tensorflow graph file.

import tfcg

parser = tfcg.from_file("./train.pbtxt")
parser.dump_json("conceptual_graph.json")
mparser.dump_img("output.png")

Examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tfcg, version 0.1.4
Filename, size File type Python version Upload date Hashes
Filename, size tfcg-0.1.4-py2.py3-none-any.whl (5.1 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size tfcg-0.1.4.tar.gz (4.6 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page