TensorFlow Datasets for Defect Detection
Project description
.. figure:: tfds_defect_detection/assets/images/logo.png
:align: center
:alt:
:scale: 50 %
.. image:: https://readthedocs.org/projects/tfds-defect-detection/badge/?version=latest
:target: https://tfds-defect-detection.readthedocs.io/en/latest/README.html
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/v/tfds_defect_detection
:target: https://pypi.org/project/tfds-defect-detection/
.. image:: https://img.shields.io/pypi/pyversions/tfds_defect_detection
:alt: PyPI - Python Version
========================================
TensorFlow Datasets for Defect Detection
========================================
To directly jump into the code look at the sample notebook
.. class:: center
|Open in Colab|
.. |Open in Colab| image:: https://img.shields.io/badge/Open%20In-Colab-orange?style=for-the-badge&logo=
:target: https://colab.research.google.com/drive/1_0diKQAHBX2q8iCEI7bmv0TnnmaWZR1M?usp=sharing
.. admonition:: Features
- tensorflow.data.Dataset builder for defect segmentation
- Comes with unsupervised / self-supervised SotA datasets
- MVTEC
- VISA
- Artificial defect generator
- Evaluation data with hand labelled images
Install
-------
Create a new python=3.9 env and install `tfds_defect_detection` from pip
.. code-block:: bash
pip install tfds_defect_detection
Examples
-----------
.. code-block:: python
import tfds_defect_detection as tfd
tfd.load()
Usage
-----------
All parmeters
.. code-block:: python
import tfds_defect_detection as tfd
impor albumentations as A
ds = tfd.load(
names = ("mvtec", "visa"),
data_dir=Path("."),
pairing_mode = "result_with_contrastive_pair", # "result_only", "result_with_original"
create_artificial_anomalies=True,
validation_split=0.2,
subset_mode = "training", # "validation", "test", "holdout", None
drop_masks=False,
width=256,
height=256,
repeat=True,
anomaly_size = None,
global_transform=A.Compose([
A.RandomBrightnessContrast(),
A.HueSaturationValue(),
]),
process_deviation=A.Compose([
A.ShiftScaleRotate(
shift_limit=0.01,
scale_limit=0.0,
rotate_limit=1.5,
p=1
),
A.Blur(blur_limit=3),
A.RandomBrightnessContrast(),
A.RandomGamma(),
A.HueSaturationValue(),
]),
anomaly_composition=A.Compose([
A.RandomRotate90(),
A.Transpose(),
A.ShiftScaleRotate(
shift_limit=0.0625,
scale_limit=0.50,
rotate_limit=45, p=1
),
A.RandomGamma(),
A.OpticalDistortion(),
A.GridDistortion(),
A.RandomContrast(0.5, p=1),
]),
batch_size=9,
seed=123,
shuffle=True,
peek=True,
image_validation=False,
delete_tmp=True,
crop_to_aspect_ratio=True
)
.. figure:: tfds_defect_detection/assets/images/example.png
:align: center
:alt:
:scale: 50 %
.. admonition:: Docs
FOR API Reference see
https://tfds-defect-detection.readthedocs.io/en/latest/autoapi/tfds_defect_detection/index.html
.. admonition:: Cite
If this project helped you during your work:
Until a publication is available, please cite as
Tobias Schiele. (2022). TFDS DD - Datasets for Defect Detection. https://github.com/thetoby9944/tfds_defect_detection.
.. code-block:: latex
@misc{Schiele2019,
author = {Tobias Schiele},
title = {TFDS DD - Datasets for Defect Detection},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/thetoby9944/tfds_defect_detection}},
}
:align: center
:alt:
:scale: 50 %
.. image:: https://readthedocs.org/projects/tfds-defect-detection/badge/?version=latest
:target: https://tfds-defect-detection.readthedocs.io/en/latest/README.html
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/v/tfds_defect_detection
:target: https://pypi.org/project/tfds-defect-detection/
.. image:: https://img.shields.io/pypi/pyversions/tfds_defect_detection
:alt: PyPI - Python Version
========================================
TensorFlow Datasets for Defect Detection
========================================
To directly jump into the code look at the sample notebook
.. class:: center
|Open in Colab|
.. |Open in Colab| image:: https://img.shields.io/badge/Open%20In-Colab-orange?style=for-the-badge&logo=
:target: https://colab.research.google.com/drive/1_0diKQAHBX2q8iCEI7bmv0TnnmaWZR1M?usp=sharing
.. admonition:: Features
- tensorflow.data.Dataset builder for defect segmentation
- Comes with unsupervised / self-supervised SotA datasets
- MVTEC
- VISA
- Artificial defect generator
- Evaluation data with hand labelled images
Install
-------
Create a new python=3.9 env and install `tfds_defect_detection` from pip
.. code-block:: bash
pip install tfds_defect_detection
Examples
-----------
.. code-block:: python
import tfds_defect_detection as tfd
tfd.load()
Usage
-----------
All parmeters
.. code-block:: python
import tfds_defect_detection as tfd
impor albumentations as A
ds = tfd.load(
names = ("mvtec", "visa"),
data_dir=Path("."),
pairing_mode = "result_with_contrastive_pair", # "result_only", "result_with_original"
create_artificial_anomalies=True,
validation_split=0.2,
subset_mode = "training", # "validation", "test", "holdout", None
drop_masks=False,
width=256,
height=256,
repeat=True,
anomaly_size = None,
global_transform=A.Compose([
A.RandomBrightnessContrast(),
A.HueSaturationValue(),
]),
process_deviation=A.Compose([
A.ShiftScaleRotate(
shift_limit=0.01,
scale_limit=0.0,
rotate_limit=1.5,
p=1
),
A.Blur(blur_limit=3),
A.RandomBrightnessContrast(),
A.RandomGamma(),
A.HueSaturationValue(),
]),
anomaly_composition=A.Compose([
A.RandomRotate90(),
A.Transpose(),
A.ShiftScaleRotate(
shift_limit=0.0625,
scale_limit=0.50,
rotate_limit=45, p=1
),
A.RandomGamma(),
A.OpticalDistortion(),
A.GridDistortion(),
A.RandomContrast(0.5, p=1),
]),
batch_size=9,
seed=123,
shuffle=True,
peek=True,
image_validation=False,
delete_tmp=True,
crop_to_aspect_ratio=True
)
.. figure:: tfds_defect_detection/assets/images/example.png
:align: center
:alt:
:scale: 50 %
.. admonition:: Docs
FOR API Reference see
https://tfds-defect-detection.readthedocs.io/en/latest/autoapi/tfds_defect_detection/index.html
.. admonition:: Cite
If this project helped you during your work:
Until a publication is available, please cite as
Tobias Schiele. (2022). TFDS DD - Datasets for Defect Detection. https://github.com/thetoby9944/tfds_defect_detection.
.. code-block:: latex
@misc{Schiele2019,
author = {Tobias Schiele},
title = {TFDS DD - Datasets for Defect Detection},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/thetoby9944/tfds_defect_detection}},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file tfds_defect_detection-1.0.0.tar.gz
.
File metadata
- Download URL: tfds_defect_detection-1.0.0.tar.gz
- Upload date:
- Size: 19.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
65a903fd2491f2e42bdb04453f6bc3ab6b099cb1a63b07ff8cdb85bc35bf7598
|
|
MD5 |
7c8892b219557b4a6dd41e77db12051f
|
|
BLAKE2b-256 |
70b3ef458615ff67df146bedbc07f891920727a545cd4759e3d82eabd78c540c
|