Skip to main content

TensorFlow Datasets for Defect Detection

Project description

.. figure:: tfds_defect_detection/assets/images/logo.png
:align: center
:alt:
:scale: 50 %


.. image:: https://readthedocs.org/projects/tfds-defect-detection/badge/?version=latest
:target: https://tfds-defect-detection.readthedocs.io/en/latest/README.html
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/v/tfds_defect_detection
:target: https://pypi.org/project/tfds-defect-detection/
.. image:: https://img.shields.io/pypi/pyversions/tfds_defect_detection
:alt: PyPI - Python Version

========================================
TensorFlow Datasets for Defect Detection
========================================

To directly jump into the code look at the sample notebook

.. class:: center

|Open in Colab|

.. |Open in Colab| image:: https://img.shields.io/badge/Open%20In-Colab-orange?style=for-the-badge&logo=
:target: https://colab.research.google.com/drive/1_0diKQAHBX2q8iCEI7bmv0TnnmaWZR1M?usp=sharing

.. admonition:: Features

- tensorflow.data.Dataset builder for defect segmentation
- Comes with unsupervised / self-supervised SotA datasets
- MVTEC
- VISA
- Artificial defect generator
- Evaluation data with hand labelled images


Install
-------

Create a new python=3.9 env and install `tfds_defect_detection` from pip

.. code-block:: bash

pip install tfds_defect_detection



Examples
-----------

.. code-block:: python

import tfds_defect_detection as tfd
tfd.load()




Usage
-----------

All parmeters

.. code-block:: python

import tfds_defect_detection as tfd
impor albumentations as A

ds = tfd.load(
names = ("mvtec", "visa"),
data_dir=Path("."),
pairing_mode = "result_with_contrastive_pair", # "result_only", "result_with_original"
create_artificial_anomalies=True,
validation_split=0.2,
subset_mode = "training", # "validation", "test", "holdout", None
drop_masks=False,
width=256,
height=256,
repeat=True,
anomaly_size = None,

global_transform=A.Compose([
A.RandomBrightnessContrast(),
A.HueSaturationValue(),
]),

process_deviation=A.Compose([
A.ShiftScaleRotate(
shift_limit=0.01,
scale_limit=0.0,
rotate_limit=1.5,
p=1
),
A.Blur(blur_limit=3),
A.RandomBrightnessContrast(),
A.RandomGamma(),
A.HueSaturationValue(),
]),

anomaly_composition=A.Compose([
A.RandomRotate90(),
A.Transpose(),
A.ShiftScaleRotate(
shift_limit=0.0625,
scale_limit=0.50,
rotate_limit=45, p=1
),
A.RandomGamma(),
A.OpticalDistortion(),
A.GridDistortion(),
A.RandomContrast(0.5, p=1),
]),

batch_size=9,
seed=123,
shuffle=True,
peek=True,
image_validation=False,
delete_tmp=True,
crop_to_aspect_ratio=True
)


.. figure:: tfds_defect_detection/assets/images/example.png
:align: center
:alt:
:scale: 50 %



.. admonition:: Docs

FOR API Reference see

https://tfds-defect-detection.readthedocs.io/en/latest/autoapi/tfds_defect_detection/index.html


.. admonition:: Cite

If this project helped you during your work:
Until a publication is available, please cite as

Tobias Schiele. (2022). TFDS DD - Datasets for Defect Detection. https://github.com/thetoby9944/tfds_defect_detection.


.. code-block:: latex

@misc{Schiele2019,
author = {Tobias Schiele},
title = {TFDS DD - Datasets for Defect Detection},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/thetoby9944/tfds_defect_detection}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfds_defect_detection-1.0.0.tar.gz (19.4 kB view details)

Uploaded Source

File details

Details for the file tfds_defect_detection-1.0.0.tar.gz.

File metadata

  • Download URL: tfds_defect_detection-1.0.0.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.5

File hashes

Hashes for tfds_defect_detection-1.0.0.tar.gz
Algorithm Hash digest
SHA256 65a903fd2491f2e42bdb04453f6bc3ab6b099cb1a63b07ff8cdb85bc35bf7598
MD5 7c8892b219557b4a6dd41e77db12051f
BLAKE2b-256 70b3ef458615ff67df146bedbc07f891920727a545cd4759e3d82eabd78c540c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page