Skip to main content

TensorFlow project scaffolding

Project description

# TF Stage

A fast and canonical project setup for TensorFlow models. The most difficult part of getting started with TensorFlow isn't deep learning, it's putting together hundreds of API calls into a cohesive model.

```
$ tfstage --help
usage: tfstage [-h] name

TensorFlow project scaffolding

positional arguments:
name Project name
install_dependencies Install pip dependencies

optional arguments:
-h, --help show this help message and exit
```

## Usage

1. Install `tfstage`:

```
pip install tfstage
```

2. Create a new empty project directory

```
$ mkdir my_project/
$ cd my_project/
```

3. Run `tfstage my_project`:

```
$ tfstage my_project
Project created: ./my_project
```

4. This stubs out an entire TensorFlow project, completely runnable using a simple XOR dataset and model. For example:

```
$ python -m my_project.main --job-dir logs/

...

INFO:tensorflow:Saving checkpoints for 1 into logs/model.ckpt.
INFO:tensorflow:loss = 1.20236, step = 1
INFO:tensorflow:Starting evaluation at 2017-07-13-18:22:20
INFO:tensorflow:Restoring parameters from logs/model.ckpt-1

...
```

## Workflow

When starting a new project we run `tfstage`, run the code to verify everything works, then search and replace the `TODO` comments in the code which mark important changes.

## Environment

High-level description of a new project:

- main.py: defines command-line arguments and sets up [`learn_runner`](https://goo.gl/I6TwxA)
- experiment.py: defines a [`tf.contrib.learn.Experiment`](https://goo.gl/nMvwLx) for training
- inputs.py: defines the input pipeline for training and evaluation
- model.py: defines the model, loss, and training optimization
- augment.py: defines any data augmentation or feature engineering
- serve.py: defines placeholders for [TensorFlow Serving](https://goo.gl/bM3jpA) and [Google Cloud ML Engine predictions](https://goo.gl/yTBv2e).

In addition, several common files are created including:

- README.md
- requirements.txt for local _development_
- setup.py for local and GCE _deployment_
- .gitignore

### Local Deployment

```
PROJECT_NAME=my_project
MODULE_NAME="${PROJECT_NAME}.main"
PACKAGE_PATH="${PROJECT_NAME}/"
JOB_DIR=logs/

gcloud ml-engine local train \
--module-name $MODULE_NAME \
--package-path $PACKAGE_PATH \
--job-dir $JOB_DIR \
-- \
[args]
```

### Cloud Deployment

```
MODULE_NAME="${PROJECT_NAME}.main"
PACKAGE_PATH="${PROJECT_NAME}/"
JOB_NAME="${PROJECT_NAME}_1"
JOB_DIR="gs://${PROJECT_NAME}/${JOB_NAME}"
REGION=us-east1

gcloud ml-engine jobs submit training $JOB_NAME \
--job-dir $JOB_DIR \
--module-name $MODULE_NAME \
--package-path $PACKAGE_PATH \
--region $REGION \
-- \
[args]
```


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
tfstage-0.1.7-py2.py3-none-any.whl (14.5 kB) Copy SHA256 hash SHA256 Wheel py2.py3

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page