Skip to main content

A Python library that implements ״Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting״

Project description


alt text alt text alt text alt text

tft-torch is a Python library that implements "Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting" using pytorch framework. The library provides a complete implementation of a time-series multi-horizon forecasting model with state-of-the-art performance on several benchmark datasets.

This library works for Python 3.7 and higher and PyTorch 1.6.0 and higher.


This library is distributed on PyPi and can be installed using pip.

$ pip install tft-torch 

The command above will automatically install all the required dependencies. Please visit the installation page for more details.

Getting started

Check out the tutorials for a demonstration how to use the library.


For more information, refer to our blogpost and complete documentation.


This repository suggests an implementation of a model based on the work presented in the following paper:

      title={Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting}, 
      author={Bryan Lim and Sercan O. Arik and Nicolas Loeff and Tomas Pfister},

Some parts of the implementation rely on mattsherar's TFT implementation, available as part of the Temporal_Fusion_Transform repository.

Info for developers

The source code of the project is available on GitHub.

$ git clone

You can install the library and the dependencies with one of the following commands:

$ pip install .                        # install library + dependencies
$ pip install ".[develop]"             # install library + dependencies + developer-dependencies
$ pip install -r requirements.txt      # install dependencies
$ pip install -r requirements-dev.txt  # install developer-dependencies

For creating the "pip-installable" *.whl file, run the following command (at the root of the repository):

$ python -m build

For creating the HTML documentation of the project, run the following commands:

$ cd docs
$ make clean
$ make html

Run tests

Tests can be executed with pytest running the following commands:

$ cd tests
$ pytest                                      # run all tests
$ pytest                   # run all tests within a module
$ pytest -k test_testname  # run only 1 test


MIT License

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tft_torch-0.0.6.tar.gz (24.1 kB view hashes)

Uploaded source

Built Distribution

tft_torch-0.0.6-py3-none-any.whl (21.9 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page