Skip to main content

Implementation of data mining methods that use evolutionary algorithms

Project description

thefittest

PyPI PyPI - Downloads

Installation

pip install thefittest

Dependencies

thefittest requires:

  • python (>=3.7,<3.11);
  • numpy (>=1.21.6,<=1.23);
  • numba (>=0.56.4).

The package contains methods

  • Genetic algorithm (Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72):
    • Self-configuring genetic algorithm (Semenkin, E.S., Semenkina, M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator. LNCS, 7331, 2012, pp. 414-421);
    • SHAGA (Stanovov, Vladimir & Akhmedova, Shakhnaz & Semenkin, Eugene. (2019). Genetic Algorithm with Success History based Parameter Adaptation. 180-187. 10.5220/0008071201800187).
  • Differential evolution (Storn, Rainer & Price, Kenneth. (1995). Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Journal of Global Optimization. 23):
    • SaDE (Qin, Kai & Suganthan, Ponnuthurai. (2005). Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings. 2. 1785-1791. 10.1109/CEC.2005.1554904);
    • jDE (Brest, Janez & Greiner, Sao & Bošković, Borko & Mernik, Marjan & Zumer, Viljem. (2007). Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Evolutionary Computation, IEEE Transactions on. 10. 646 - 657. 10.1109/TEVC.2006.872133);
    • JADE (Zhang, Jingqiao & Sanderson, A.C.. (2009). JADE: Adaptive Differential Evolution With Optional External Archive. Evolutionary Computation, IEEE Transactions on. 13. 945 - 958. 10.1109/TEVC.2009.2014613);
    • SHADE (Tanabe, Ryoji & Fukunaga, Alex. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013. 71-78. 10.1109/CEC.2013.6557555).
  • Genetic programming (Koza, John R.. “Genetic programming - on the programming of computers by means of natural selection.” Complex Adaptive Systems (1993)):
    • Self-configuring genetic programming (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).

Benchmarks

  • CEC2005 (Suganthan, Ponnuthurai & Hansen, Nikolaus & Liang, Jing & Deb, Kalyan & Chen, Ying-ping & Auger, Anne & Tiwari, Santosh. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Natural Computing. 341-357);
  • Symbolicregression17. 17 test regression problem from the paper (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).

You can also look at notebooks with examples of how to use thefittest.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thefittest-0.1.14.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

thefittest-0.1.14-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file thefittest-0.1.14.tar.gz.

File metadata

  • Download URL: thefittest-0.1.14.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for thefittest-0.1.14.tar.gz
Algorithm Hash digest
SHA256 661aad45fdfbe423082e45795e2e80c7a7cb811e1218fa7b8c7b513d1aa3ec2b
MD5 dcbca0362a4598f3378157ef4abe0c68
BLAKE2b-256 0e7903129b1396caa431a3f21d8a694f00d70f5e45d5cfafdd85e8d634ca6273

See more details on using hashes here.

File details

Details for the file thefittest-0.1.14-py3-none-any.whl.

File metadata

  • Download URL: thefittest-0.1.14-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for thefittest-0.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 b529f3c78e381059b9e7f73a55ef7a99218085ef22ed5a50b5ebc7f9f5a2e216
MD5 9a88dc44e27145e7d345dc73d7aae8be
BLAKE2b-256 95088fc9a60f468b283f4963bf813d1cf38f3992ed1c375e3ef8d7ae9ad78f91

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page