Skip to main content

tiktoken is a fast BPE tokeniser for use with OpenAI's models

Project description

⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.

import tiktoken
enc = tiktoken.get_encoding("o200k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4o")

The open source version of tiktoken can be installed from PyPI:

pip install tiktoken

The tokeniser API is documented in tiktoken/core.py.

Example code using tiktoken can be found in the OpenAI Cookbook.

Performance

tiktoken is between 3-6x faster than a comparable open source tokeniser:

image

Performance measured on 1GB of text using the GPT-2 tokeniser, using GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0.

Getting help

Please post questions in the issue tracker.

If you work at OpenAI, make sure to check the internal documentation or feel free to contact @shantanu.

What is BPE anyway?

Language models don't see text like you and I, instead they see a sequence of numbers (known as tokens). Byte pair encoding (BPE) is a way of converting text into tokens. It has a couple desirable properties:

  1. It's reversible and lossless, so you can convert tokens back into the original text
  2. It works on arbitrary text, even text that is not in the tokeniser's training data
  3. It compresses the text: the token sequence is shorter than the bytes corresponding to the original text. On average, in practice, each token corresponds to about 4 bytes.
  4. It attempts to let the model see common subwords. For instance, "ing" is a common subword in English, so BPE encodings will often split "encoding" into tokens like "encod" and "ing" (instead of e.g. "enc" and "oding"). Because the model will then see the "ing" token again and again in different contexts, it helps models generalise and better understand grammar.

tiktoken contains an educational submodule that is friendlier if you want to learn more about the details of BPE, including code that helps visualise the BPE procedure:

from tiktoken._educational import *

# Train a BPE tokeniser on a small amount of text
enc = train_simple_encoding()

# Visualise how the GPT-4 encoder encodes text
enc = SimpleBytePairEncoding.from_tiktoken("cl100k_base")
enc.encode("hello world aaaaaaaaaaaa")

Extending tiktoken

You may wish to extend tiktoken to support new encodings. There are two ways to do this.

Create your Encoding object exactly the way you want and simply pass it around.

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)

Use the tiktoken_ext plugin mechanism to register your Encoding objects with tiktoken.

This is only useful if you need tiktoken.get_encoding to find your encoding, otherwise prefer option 1.

To do this, you'll need to create a namespace package under tiktoken_ext.

Layout your project like this, making sure to omit the tiktoken_ext/__init__.py file:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py

my_encodings.py should be a module that contains a variable named ENCODING_CONSTRUCTORS. This is a dictionary from an encoding name to a function that takes no arguments and returns arguments that can be passed to tiktoken.Encoding to construct that encoding. For an example, see tiktoken_ext/openai_public.py. For precise details, see tiktoken/registry.py.

Your setup.py should look something like this:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)

Then simply pip install ./my_tiktoken_extension and you should be able to use your custom encodings! Make sure not to use an editable install.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiktoken-0.9.0.tar.gz (36.0 kB view details)

Uploaded Source

Built Distributions

tiktoken-0.9.0-cp313-cp313-win_amd64.whl (894.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

tiktoken-0.9.0-cp312-cp312-win_amd64.whl (894.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

tiktoken-0.9.0-cp311-cp311-win_amd64.whl (893.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

tiktoken-0.9.0-cp310-cp310-win_amd64.whl (894.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

tiktoken-0.9.0-cp39-cp39-win_amd64.whl (894.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

File details

Details for the file tiktoken-0.9.0.tar.gz.

File metadata

  • Download URL: tiktoken-0.9.0.tar.gz
  • Upload date:
  • Size: 36.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0.tar.gz
Algorithm Hash digest
SHA256 d02a5ca6a938e0490e1ff957bc48c8b078c88cb83977be1625b1fd8aac792c5d
MD5 ac648a7859d8c4f5ea4a646ec9d1447b
BLAKE2b-256 eacf756fedf6981e82897f2d570dd25fa597eb3f4459068ae0572d7e888cfd6f

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.9.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 894.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95
MD5 1a76a6fddf0f120cde38625a825a1b01
BLAKE2b-256 dea88f499c179ec900783ffe133e9aab10044481679bb9aad78436d239eee716

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cd69372e8c9dd761f0ab873112aba55a0e3e506332dd9f7522ca466e817b1b7a
MD5 c7d4db6a8166aa22ed151f605d91364f
BLAKE2b-256 fa5c74e4c137530dd8504e97e3a41729b1103a4ac29036cbfd3250b11fd29451

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc156cb314119a8bb9748257a2eaebd5cc0753b6cb491d26694ed42fc7cb3139
MD5 1835799060734035739ee9dd7dc16898
BLAKE2b-256 f2bb4513da71cac187383541facd0291c4572b03ec23c561de5811781bbd988f

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2cf8ded49cddf825390e36dd1ad35cd49589e8161fdcb52aa25f0583e90a3e01
MD5 c5e609660d46f935edf5aac7fe4b2729
BLAKE2b-256 fe829197f77421e2a01373e27a79dd36efdd99e6b4115746ecc553318ecafbf0

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27d457f096f87685195eea0165a1807fae87b97b2161fe8c9b1df5bd74ca6f63
MD5 e873958bdcb6c96f0b7f8325f780726c
BLAKE2b-256 800ef38ba35713edb8d4197ae602e80837d574244ced7fb1b6070b31c29816e0

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2b0e8e05a26eda1249e824156d537015480af7ae222ccb798e5234ae0285dbdb
MD5 0804b2bcaa470b605fc108d15bc67ab2
BLAKE2b-256 7a1109d936d37f49f4f494ffe660af44acd2d99eb2429d60a57c71318af214e0

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 894.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5a62d7a25225bafed786a524c1b9f0910a1128f4232615bf3f8257a73aaa3b16
MD5 0eb06198f243f482417d6f2cf3845f98
BLAKE2b-256 5b64b16003419a1d7728d0d8c0d56a4c24325e7b10a21a9dd1fc0f7115c02f0a

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 badb947c32739fb6ddde173e14885fb3de4d32ab9d8c591cbd013c22b4c31dd2
MD5 2c4a3eeeb58f53757a4a3ad481fedea9
BLAKE2b-256 5c411e59dddaae270ba20187ceb8aa52c75b24ffc09f547233991d5fd822838b

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99376e1370d59bcf6935c933cb9ba64adc29033b7e73f5f7569f3aad86552b22
MD5 b2fff9200d485a60d13f2cb3773cb7c7
BLAKE2b-256 1b40da42522018ca496432ffd02793c3a72a739ac04c3794a4914570c9bb2925

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95e811743b5dfa74f4b227927ed86cbc57cad4df859cb3b643be797914e41794
MD5 c1ba6c2ef17ed4ee72937356d050a2c1
BLAKE2b-256 40101305bb02a561595088235a513ec73e50b32e74364fef4de519da69bc8010

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6600660f2f72369acb13a57fb3e212434ed38b045fd8cc6cdd74947b4b5d210
MD5 a590edf18031be8da081a97263e92d05
BLAKE2b-256 8e03a95e7b4863ee9ceec1c55983e4cc9558bcfd8f4f80e19c4f8a99642f697d

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e88f121c1c22b726649ce67c089b90ddda8b9662545a8aeb03cfef15967ddd03
MD5 0a57b3f58a43142c76c7c6ac45abcd47
BLAKE2b-256 cfe521ff33ecfa2101c1bb0f9b6df750553bd873b7fb532ce2cb276ff40b197f

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 893.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 11a20e67fdf58b0e2dea7b8654a288e481bb4fc0289d3ad21291f8d0849915fb
MD5 546adadb74fdd5631d2296c34b1876fe
BLAKE2b-256 6f07c67ad1724b8e14e2b4c8cca04b15da158733ac60136879131db05dda7c30

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b2a21133be05dc116b1d0372af051cd2c6aa1d2188250c9b553f9fa49301b336
MD5 34f455367b42c75fed049062647620cd
BLAKE2b-256 7d7c1069f25521c8f01a1a182f362e5c8e0337907fae91b368b7da9c3e39b810

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b3d80aad8d2c6b9238fc1a5524542087c52b860b10cbf952429ffb714bc1136
MD5 7d88ddeaef0c93dc6af3656c1c8d8cda
BLAKE2b-256 b17341591c525680cd460a6becf56c9b17468d3711b1df242c53d2c7b2183d16

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03935988a91d6d3216e2ec7c645afbb3d870b37bcb67ada1943ec48678e7ee33
MD5 56697a12f8acf706d3512b42cff0a957
BLAKE2b-256 035801fb6240df083b7c1916d1dcb024e2b761213c95d576e9f780dfb5625a76

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45556bc41241e5294063508caf901bf92ba52d8ef9222023f83d2483a3055348
MD5 dbc125aaa98c6b4dc714b6a7077bf3d4
BLAKE2b-256 3f8655d9d1f5b5a7e1164d0f1538a85529b5fcba2b105f92db3622e5d7de6522

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f32cc56168eac4851109e9b5d327637f15fd662aa30dd79f964b7c39fbadd26e
MD5 76f47354a8c857937df40123d169a757
BLAKE2b-256 4dae4613a59a2a48e761c5161237fc850eb470b4bb93696db89da51b79a871f1

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 894.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 26113fec3bd7a352e4b33dbaf1bd8948de2507e30bd95a44e2b1156647bc01b4
MD5 9a032f996fd7f582bdd7c98ba1400a2d
BLAKE2b-256 cd4c22eb8e9856a2b1808d0a002d171e534eac03f96dbe1161978d7389a59498

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 15a2752dea63d93b0332fb0ddb05dd909371ededa145fe6a3242f46724fa7990
MD5 b625e17e9c4a4723cb34fa1d5ec36705
BLAKE2b-256 c76c9c1a4cc51573e8867c9381db1814223c09ebb4716779c7f845d48688b9c8

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92a5fb085a6a3b7350b8fc838baf493317ca0e17bd95e8642f95fc69ecfed1de
MD5 82f34906b2198680769ce7744a694fa2
BLAKE2b-256 f195cc2c6d79df8f113bdc6c99cdec985a878768120d87d839a34da4bd3ff90a

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0968d5beeafbca2a72c595e8385a1a1f8af58feaebb02b227229b69ca5357fd
MD5 5795deb5b86a0aee802138447fe5eeef
BLAKE2b-256 bc203ed4cfff8f809cb902900ae686069e029db74567ee10d017cb254df1d598

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9c59ccc528c6c5dd51820b3474402f69d9a9e1d656226848ad68a8d5b2e5108
MD5 43a09162b562511f58a7e4a96fd74f19
BLAKE2b-256 d6f85a9560a422cf1755b6e0a9a436e14090eeb878d8ec0f80e0cd3d45b78bf4

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 586c16358138b96ea804c034b8acf3f5d3f0258bd2bc3b0227af4af5d622e382
MD5 972808374c612372db2f3970e6e6a307
BLAKE2b-256 64f350ec5709fad61641e4411eb1b9ac55b99801d71f1993c29853f256c726c9

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tiktoken-0.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 894.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26242ca9dc8b58e875ff4ca078b9a94d2f0813e6a535dcd2205df5d49d927cc7
MD5 3b5994a8174922dcf024f7d9042e5375
BLAKE2b-256 7022e8fc1bf9cdecc439b7ddc28a45b976a8c699a38874c070749d855696368a

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e5fd49e7799579240f03913447c0cdfa1129625ebd5ac440787afc4345990427
MD5 430fd798b3a6c323f5fecc08ef6de0c3
BLAKE2b-256 1c2edf2dc31dd161190f315829775a9652ea01d60f307af8f98e35bdd14a6a93

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ebcec91babf21297022882344c3f7d9eed855931466c3311b1ad6b64befb3df
MD5 dbc53bc68e452a0100b372ab3dabd616
BLAKE2b-256 65ae4d1682510172ce3500bbed3b206ebc4efefe280f0bf1179cfb043f88cc16

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e15b16f61e6f4625a57a36496d28dd182a8a60ec20a534c5343ba3cafa156ac7
MD5 2e67897fc264c9dc64e858ae4e2ee7b9
BLAKE2b-256 33352792b7dcb8b150d2767322637513c73a3e80833c19212efea80b31087894

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 75f6d5db5bc2c6274b674ceab1615c1778e6416b14705827d19b40e6355f03e0
MD5 602055b5d1dd7e7eba0c3f289d091bbc
BLAKE2b-256 12ddaf27bbe186df481666de48cf0f2f4e0643ba9c78b472e7bf70144c663b22

See more details on using hashes here.

File details

Details for the file tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for tiktoken-0.9.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c6386ca815e7d96ef5b4ac61e0048cd32ca5a92d5781255e13b31381d28667dc
MD5 5ad10167198309ddda7ae80b9f75a5c7
BLAKE2b-256 c4924d681b5c066d417b98f22a0176358d9e606e183c6b61c337d61fb54accb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page