Skip to main content

Tool for quantizing image colors using tile-based palette restrictions

Project description

Build Status Version Downloads License (MIT) Supported Python versions

Tilequant is a utility to reduce the colors in an image (quantizing). The current version is based on Tilequant by Aikku93 (the same name is coincidental)).

It does so by limiting each tile (by default an area of 8x8 pixels) of the image to a subset of colors (a palette). The whole image has one big palette that consists of those smaller palettes.

This tool is a standalone part of SkyTemple, the ROM editor for Pokémon Mystery Dungeon Explorers of Sky. By default it produces images that can be used by SkyTemple. However the images are probably also useful for use with other games that have similar restrictions for backgrounds.

Make sure the input image is a RGB image without an alpha channel. The image library used has some problems with converting other image types to RGB in some cases.

The output is an image with a palettes as shown in the example.

https://github.com/SkyTemple/tilequant/raw/master/examples/export_example2.png

(This example is based on an old legacy version).

This tool is not affiliated with Nintendo, Spike Chunsoft or any of the parties involved in creating Pokémon Mystery Dungeon Explorers of Sky. This is a fan-project.

Installation

Python 3 is required.

Via pip3:

pip3 install -U tilequant

Usage

Usage: tilequant [OPTIONS] INPUT_IMAGE OUTPUT_IMAGE

  Converts any image into a indexed image containing a number of smaller
  sub-palettes (--num-palettes), each with a fixed color length (--colors-
  per-palette). The conversion will assign each tile in the image one of
  these sub-palettes to use (single-palette-per-tile constraint).

  INPUT_IMAGE is the path of the image to convert and OUTPUT_IMAGE is where
  to save the converted image. All image types supported by PIL (the Python
  image library) can be used. :return:

Options:
  -n, --num-palettes INTEGER      [Default: 16] Number of palettes in the
                                  output.
  -c, --colors-per-palette INTEGER
                                  [Default: 16] Number of colors per palette.
                                  If transparency is enabled, the first color
                                  in each palette is reserved for it.
  -t, --transparent-color TEXT    A single color value (hex style, eg. 12ab56)
                                  that should be treated as transparent, when
                                  doingthe conversion with transparency
                                  enabled.
  -v, --loglevel [DEBUG|INFO|WARNING|ERROR|FATAL|CRITICAL]
                                  [Default: INFO] Log level.
  --help                          Show this message and exit.

Examples

For the new version no examples exist yet. However to get a general idea, you can view the examples of the old version in “examples”.

Transparency

The actual amount of colors per palette is one lower than specified and a “transparency color” is added at index 0 of all palettes. If transparent-color is specified, the image is scanned for pixels with this color first and in the end, those pixels will be assigned their local “transparent color” index.

Legacy version

Originally (before integrating the new and much better newer version based on Tilequant by Aikku93) there was a pretty bad pure-Python based version of this tool. It is no longer available in current versions of this lib, to access it see versions prior to 1.x.

The only thing left over from the legacy implementation is Tilequant.simple_convert (only accessible via API) which allows trying to convert images without running any sort of quantization on them, failing if not possible.

Special Thanks

  • Aikku93

  • Nerketur

  • AntyMew

  • psy_commando

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tilequant-1.2.0.tar.gz (45.5 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

tilequant-1.2.0-pp310-pypy310_pp73-win_amd64.whl (50.2 kB view details)

Uploaded PyPyWindows x86-64

tilequant-1.2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (46.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

tilequant-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (44.7 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

tilequant-1.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (44.0 kB view details)

Uploaded PyPymacOS 10.15+ x86-64

tilequant-1.2.0-cp313-cp313-win_amd64.whl (50.2 kB view details)

Uploaded CPython 3.13Windows x86-64

tilequant-1.2.0-cp313-cp313-win32.whl (46.9 kB view details)

Uploaded CPython 3.13Windows x86

tilequant-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (73.5 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

tilequant-1.2.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

tilequant-1.2.0-cp313-cp313-macosx_11_0_arm64.whl (45.3 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

tilequant-1.2.0-cp313-cp313-macosx_10_13_x86_64.whl (44.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

tilequant-1.2.0-cp312-cp312-win_amd64.whl (50.2 kB view details)

Uploaded CPython 3.12Windows x86-64

tilequant-1.2.0-cp312-cp312-win32.whl (46.9 kB view details)

Uploaded CPython 3.12Windows x86

tilequant-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (73.5 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

tilequant-1.2.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

tilequant-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (45.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

tilequant-1.2.0-cp312-cp312-macosx_10_13_x86_64.whl (44.5 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

tilequant-1.2.0-cp311-cp311-win_amd64.whl (50.2 kB view details)

Uploaded CPython 3.11Windows x86-64

tilequant-1.2.0-cp311-cp311-win32.whl (46.9 kB view details)

Uploaded CPython 3.11Windows x86

tilequant-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (73.5 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

tilequant-1.2.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

tilequant-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (45.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

tilequant-1.2.0-cp311-cp311-macosx_10_13_x86_64.whl (44.5 kB view details)

Uploaded CPython 3.11macOS 10.13+ x86-64

tilequant-1.2.0-cp310-cp310-win_amd64.whl (50.2 kB view details)

Uploaded CPython 3.10Windows x86-64

tilequant-1.2.0-cp310-cp310-win32.whl (46.9 kB view details)

Uploaded CPython 3.10Windows x86

tilequant-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (73.5 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

tilequant-1.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

tilequant-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (45.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

tilequant-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl (44.5 kB view details)

Uploaded CPython 3.10macOS 10.13+ x86-64

File details

Details for the file tilequant-1.2.0.tar.gz.

File metadata

  • Download URL: tilequant-1.2.0.tar.gz
  • Upload date:
  • Size: 45.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0.tar.gz
Algorithm Hash digest
SHA256 d22edbacbfe19fc48e8f7abfae939c390f505bfe0c7b0d9faf4638da4e0af542
MD5 1483527ca0163c125de61ebe4be1e6ad
BLAKE2b-256 826a31bf67d55f05f0dc3970f03dbc23951fe6dbd8ff84e508c245df2b7205d3

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 69dd59e7b21457379e8e04c99b56eeb95c26b52388d27d107645a298f2a24920
MD5 395b80376ec0170deeb8edb582548cac
BLAKE2b-256 a52d491a81584b5748c7ccbb1339ffa42ccbce24570933ab32f9b71f200da8ae

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27a2ac72ed8fd5746058d1cb521ce84cc39673edc4ddd377a906eec4dd5e7ca7
MD5 1b5c3c574aa4cf9a1003098856f0b3c7
BLAKE2b-256 ea0682d63b8149f1da66fb2a63dcf9ed59eae9e3bb60e57867cae30691f28bc1

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4d51aa860ac0c875722e75016ecdd994a3bb821665bd9e1d9c74afcb0550d46
MD5 6f95341dba6de2d8fd39da5bfdfc369a
BLAKE2b-256 8aaebf302429d8a79ab200262543ecf901889beb99dc422d115c5b52d57c5f6f

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b0ed879e1dd35443dbf92a9d17f5d0e1961f2dcda6872835f98480ae5456752c
MD5 39740ac4cb683094e9a22f21f1d031b1
BLAKE2b-256 d6d695523ed134e30c8bd055083618ac5ddee218fed0eb39e6a82357450dd924

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 50.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b8c6474768b302945aef5a0d5bbbf7b3f6062b2957cd39b40f2ad4e27f435b40
MD5 2586b5a42304adec04dd57e1836506c6
BLAKE2b-256 90d3f07da86e7b1eb51ecf6d28ee5e161ba1242ad561bf5f7ec7c716b616e548

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 46.9 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 e923be9a0e324181c2ee9f05d34188444be51beba575fa5f3edcf78d613c4b2e
MD5 0ed3b989057c0d051310c8e0ad919616
BLAKE2b-256 614b48f88cca6a89c70d3733f93cf4c63c2e4e2fe71bfb22f33fa44c260493f6

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b7356f28977316fe54962219244ea8ba564b2808b9f220884034129db6fbdf2c
MD5 71afd7b96fcd6a40093a5c4358568930
BLAKE2b-256 33e477678cc2c7255f4d71b64446d60e1a59c2192fae8b4637333352280bb87d

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4df22d12bb1772314b111d70dab5414fb0357d1ab679c8b49e4bd1c23a9762ff
MD5 f0e198b4112497688ada730f78a975ab
BLAKE2b-256 11071ca73487953cd3b2d3e1fde783d61c3bd62906c547e9f4de15ceb797b953

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5549a05999417ff8e675c17307fc60bdc9c44c0643cca8b1473d84267684784
MD5 f12372c00885c0dd5d2455893a9d3f83
BLAKE2b-256 a9785826face81f7a135bf70685a1a2314343d3164ce750092efe4a570ed32b5

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e2459a85f329080786bbacfd80dee6b0f1600a439bd2846e364044b5bc02a586
MD5 6688dc8db53870d15a5ed891cc34e277
BLAKE2b-256 b7eae4a862295e8d251504917e5d92d079dcf5634a35b35405ca9ecba97486c1

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 50.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0dd113917d010b6778104a8652bb02d80c530dcdab103dc07be53dbcfc20f7fb
MD5 63a4bfb612572dd8c43d844ab21228dc
BLAKE2b-256 d04bd4cd219fbb1ba98f6decd5ba21689d221fcd03a94866d5956c30b894dbdd

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 46.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9fdaa6913058bf0049d8c1a8a8a9490e5a6157c1e666d11c7d1c84b171ad8025
MD5 799006ea6ea87374996234734b9ccefd
BLAKE2b-256 53b15a18b4e2fbd9f6eb38129dbfa9fb1cade93f65d967b5f4cded342f595800

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d499a3ada41a5d834ff98b8c0594263b863b7622bec25c789136c0fed384f4c5
MD5 8aff80a0ad6bf390cdc4c49d678fc080
BLAKE2b-256 0bb562fdebbc954786777827c0b55b8bb69086372f1aa3203586d33286b21b0a

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b209c79858e7a10b389e3f2d767f47beadbb7c64efe2dd6b9e8e0a47a9216e2a
MD5 780d644963fdc7e61b20cc77bc549861
BLAKE2b-256 ce2c87b065bbd77f73fd317757d691d7bc9034b4ecffcbbe49d85f20ea537ce9

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 523dcd023f770f6e63453c93a1eaa8aa5fba95f6499503e355302b2dd2dcf77f
MD5 5a36c632154d7c7d007d8691e0198b07
BLAKE2b-256 bd10b49cf52094ca1191d0b496f0c688cb6582344256c4340424eb533ffc42bc

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 292b3938c8495e440c63f29d0761ec897bb6c885dbacc603d876a10d31998570
MD5 62f8ed855222eb9908cc5d0b79f5af15
BLAKE2b-256 22ac92b990d068e78dd0141a2c634087a840727209797bc14f793b53da508dd3

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 50.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0338ca33dcad587a20036936d31bed5fd341a1797d55e4368401a80e8a5f909a
MD5 6a48ba2e9f74652c3e010109376f4ba2
BLAKE2b-256 eb76c0767fcfaa2724107c808e0ada9dbdf8dc55e606844e6ce812f91352a295

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 46.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e9886f0e3f6f635befe5ad618dac6734e2febca1ea5ef2914b910cbd1a821fa8
MD5 0c0d502ddf6795311fc142766e6760f6
BLAKE2b-256 9d88fa959d52a7975f3eca46c77a5e918b20242436edd7eefd09580245ee4706

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b573aa9ab72cf955fccd48b015c4b545fb62a4b7df069cdeeb1dcdaeb1c1d4d6
MD5 a2a135e6d605f283bab5ed4f8891b398
BLAKE2b-256 07ffd59fa18f42bc0007939069a8b5ec945d8a3f6e5e308ee7107a266d492a8a

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bee4f8d169c1ac048bad72b5bc7ec3ec45697409e6503a882e857639b2fd2b7b
MD5 836c53c9c52b17d032c4b13f393c3984
BLAKE2b-256 524827e46310a46529e56fe85a0018c71bab2acbb8b29c6b247db2b69ad9e37c

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f32d6d172f2604fdba43206f0fb3bdfd3505152351fc31c91ce971fbbba3d39b
MD5 c44add6bfaff494307efc1d68ecd09e7
BLAKE2b-256 1a8ac0b7f414458e31d7eee4bba8b732ad3c9de9d6cb21beaa5352269fb10ce7

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9285820674859bc263dda17a2ba1fe4618afddde4021494139baeeae0c80678c
MD5 e48d4cb4551b7dfafecd84609f1d344a
BLAKE2b-256 de5e0293b01b678d61a48b0a6a2a47773f7c0fff261684117d79062a6472f0d5

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 50.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dab1e9599bb41413e5f2e8d319158afe8aa284a1fd6749e7b87f15bbab676f9f
MD5 807c93a68b6bc83433daadeea96fe328
BLAKE2b-256 5a04ddeabf10d090424d6326475367e59c1687bbe1dc7a8f5652338c60614f0e

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: tilequant-1.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 46.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.11.11

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5084ef004cc79f6a8af6f54a8552f1e82b01a7334b51d481b175095f4b0929ce
MD5 42f9ea3473ef1f9b643966c789163a8a
BLAKE2b-256 0a7eb44eb176c0bc0f9a837c5874c0d3cc2a2ebcf11a5be8cc1af2925ca9220e

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e4a58b941ba031f877e3c379db27de3928156d787610e0ee927c7f1588cbc9c0
MD5 4c3fdae96c0555e10f56c796f5a34903
BLAKE2b-256 96baa62f1bf32dde14e06d6be1219790211efa06d7d6b0a28b22adb7c00da303

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b4fa7190e9092a86e05d140b99c481c1d7d49f17dba5deddb54f371f61e376a
MD5 3851497733a30eb34a5da521459db7a9
BLAKE2b-256 74547747c746f1893bf05eee8cf464ade0299d6346c9d85c115f591b6916d1be

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19ddc60e981aa0616c36a8b0cefd63b5e93e6de47d8afd0525dd63aa202ab828
MD5 2167527c82dfb8d3b4337ad8b451df5a
BLAKE2b-256 ecb4f33204b518e569103aa969e5e3d9977f10958cf6a7325fdf58e64d75868c

See more details on using hashes here.

File details

Details for the file tilequant-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tilequant-1.2.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 70e29c63b69b326f3da8d5d37ae369f777898cf7bb196b2b041c36349f440df6
MD5 a83e87c1bec93b43fdc2284ef354a085
BLAKE2b-256 6dc2b91626edf4a4bbd1dc4182c1de706b6cb6535e55a59ac8fe6696003824bd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page