Skip to main content

Time series dataset for torch.

Project description

Time Series Dataset

PyPI version travis codecov GitHub license Requirements Status

Description

Time series dataset for Time series predictor

Installation

pip install time-series-dataset

Usage example

"""
FlightsDataset
"""

import calendar
import math
import numpy as np
import pandas as pd
import seaborn as sns
from datetime import datetime

from time_series_dataset import TimeSeriesDataset


def _raw_make_predictor(features, *reshape_args):
    #pylint: disable=too-many-function-args
    return np.concatenate(features, axis=-1).reshape(
        list(reshape_args) + [len(features)]).astype(np.float32)


def _make_predictor(features, number_of_training_examples):
    #pylint: disable=too-many-function-args
    return _raw_make_predictor(features, number_of_training_examples, -1)


def _get_labels(input_features, output_features):
    def _features_to_label_list(features):
        return [list(feature)[0] for feature in features]
    labels = {}
    labels['x'] = _features_to_label_list(input_features)
    labels['y'] = _features_to_label_list(output_features)
    return labels


class FlightsDataset(TimeSeriesDataset):
    """
    FlightsDataset class

    :param except_last_n: initialize the FlightsDataset without n last months
    """

    # pylint: disable=too-many-locals
    def __init__(self, except_last_n=0):
        flights_dataset = sns.load_dataset("flights")
        chopped_flights_dataset = flights_dataset[:len(
            flights_dataset)-except_last_n]
        passengers = chopped_flights_dataset['passengers']
        month = chopped_flights_dataset['month']
        year = chopped_flights_dataset['year']

        months_3l = [month_name[0:3]
                     for month_name in list(calendar.month_name)]
        month_number = [months_3l.index(_month)
                        for _month in month]

        passengers_df = pd.DataFrame(passengers)
        month_number_df = pd.DataFrame(data={'month_number': month_number})
        year_df = pd.DataFrame(year)

        number_of_training_examples = 1
        # Store month_number and year as _x
        input_features = [month_number_df, year_df]
        _x = _make_predictor(input_features, number_of_training_examples)

        # Store passengers as _y
        output_features = [passengers_df]
        _y = _make_predictor(output_features, number_of_training_examples)

        super().__init__(_x, _y, _get_labels(input_features, output_features))
        self.month_number_df = month_number_df
        self.year_df = year_df

    # pylint: disable=arguments-differ
    def make_future_dataframe(self, number_of_months, include_history=True):
        """
        make_future_dataframe

        :param number_of_months: number of months to predict ahead
        :param include_history: optional, selects if training history is to be included or not
        :returns: future dataframe with the selected amount of months
        """
        def create_dataframe(name, data):
            return pd.DataFrame(data={name: data})

        def create_month_dataframe(data):
            return create_dataframe('month_number', data)

        def create_year_dataframe(data):
            return create_dataframe('year', data)

        month_number_df = self.month_number_df
        year_df = self.year_df
        last_month = month_number_df.values[-1][0]
        last_year = year_df.values[-1][0]
        if not include_history:
            month_number_df = create_month_dataframe([])
            year_df = create_year_dataframe([])
        for i in range(number_of_months):
            month_index = last_month+i
            new_months = [math.fmod(month_index, 12)+1]
            new_years = [last_year + math.floor(month_index / 12)]
            month_number_df = month_number_df.append(
                create_month_dataframe(new_months), ignore_index=True)
            year_df = year_df.append(
                create_year_dataframe(new_years), ignore_index=True)
        input_features = [month_number_df, year_df]
        return _make_predictor(input_features, 1)


def convert_year_month_array_to_datetime(year_month_array):
    def convert_singe_year_month_array_to_datetime(single_year_month_array):
        return datetime(year=single_year_month_array[1], month=single_year_month_array[0], day=15)
    year_month_array_size = year_month_array.size
    if year_month_array_size == 2:
        return convert_singe_year_month_array_to_datetime(year_month_array)
    return [convert_singe_year_month_array_to_datetime(year_month_array[idx, ...]) for idx in range(len(year_month_array))]

Oze dataset history

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

time_series_dataset-0.0.9.tar.gz (4.7 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page