Skip to main content

A plotting backend for the TimeSeriesQL library

Project description

Contributors Forks Stargazers Issues LinkedIn


TimeSeriesQL-Matplotlib

A plotting backend for the TimeSeriesQL library

Table of Contents

About The Project

This project adds a matplotlib plotting backend for the TimeSeriesQL project.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

The requirements are in the requirements.txt file.

Installation

pip

pip install timeseriesql-matplotlib

manual

  1. Clone the timeseriesql-matplotlib
git clone https:://github.com/mbeale/timeseriesql-matplotlib.git
  1. Install library
cd timeseriesql-matplotlib
python setup.py install 

Usage

The charting library operates on TimeSeries objects. The Axes can be overriden to control the placement of the charts. All the below examples use the following code:

import matplotlib.pyplot as plt

from timeseriesql_matplotlib import MatplotlibTQL as mp
from timeseriesql.backends.csv_backend import CSVBackend

data = CSVBackend(x for x in "AAPL.csv")[:] #CSV of AAPL stock data header = (open, close, high, low, adj close)

Line Plot

mp().line_plot(data)
plt.show()

Line Plot Example

Stacked Plot

mp().stacked_plot(data)
plt.show()

Stacked Plot Example

Timebox Plot

mp().line_plot(data)
timebox_plot(data[:,0])
"""
the plot arguement defaults to auto but you can set a specific period
s    - second buckets
m    - minute buckets
h    - hour buckets
d    - day buckets
mth  - month buckets
y    - year buckets
"""

Timebox Plot Example

Distribution Plot

mp().dist_plot(data[:,0], percentiles=[25,75]) #percentiles are optional
plt.show()

Distribution Plot Example

Correlogram Plot

mp().correlogram_plot(data)
plt.show()

Correlogram Plot Example

Text Plot

mp().line_plot(data)
mp().text_plot(data[-1,0], title="A Nice Text Box", thresholds=[(0, 'green', 'white'), (20, 'cornflowerblue', 'white'), (None, 'darkorange', 'white')])

Text Plot Example

Layout Example

from matplotlib.gridspec import GridSpec

fig = plt.figure(constrained_layout=True, figsize=(20,20))

gs = GridSpec(4, 4, figure=fig)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[0, 3])
ax5 = fig.add_subplot(gs[1:3, :3])
ax6 = fig.add_subplot(gs[1, 3])
ax7 = fig.add_subplot(gs[2, 3])
ax8 = fig.add_subplot(gs[3, :2])
ax9 = fig.add_subplot(gs[3, 2:])


mp().text_plot(data[:,0].mean(), ax=ax1, title="Avg Close")
mp().text_plot(data[:,1].mean(), ax=ax2, title="Avg High")
mp().text_plot(data[:,2].mean(), ax=ax3, title="Avg Low")
mp().line_plot(data[:,0], ax = ax4)
mp().line_plot(data, ax=ax5)
mp().line_plot(data[:,1], ax=ax6)
mp().line_plot(data[:,2], ax=ax7)
mp().line_plot(data[:,3], ax=ax8)
mp().line_plot(data[:,4], ax=ax9)

Text Plot Example

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Michael Beale - michael.beale@gmail.com

Project Link: https://github.com/mbeale/timeseriesql-matplotlib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

timeseriesql-matplotlib-0.0.2.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

timeseriesql_matplotlib-0.0.2-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file timeseriesql-matplotlib-0.0.2.tar.gz.

File metadata

  • Download URL: timeseriesql-matplotlib-0.0.2.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1

File hashes

Hashes for timeseriesql-matplotlib-0.0.2.tar.gz
Algorithm Hash digest
SHA256 e4ec0b6b12bfd626fd161714ba496b7a5d94865b061a636046f0410535481101
MD5 b72fb219d1721cd822326762f8d23edf
BLAKE2b-256 59a253ecd77aa47579160781a7989daae0d8ff30ef3156141789b176327731d8

See more details on using hashes here.

File details

Details for the file timeseriesql_matplotlib-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: timeseriesql_matplotlib-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1

File hashes

Hashes for timeseriesql_matplotlib-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f62747fee66084d518b3e589a1891d5b47e626e713b8afbec3593097607eb837
MD5 c08f9b2052ca442c2323e46dc9041fb3
BLAKE2b-256 68953ba245f690c63cad9ae82003ca1a708fe904c9eb0dca9240a200545a787c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page