Skip to main content

A plotting backend for the TimeSeriesQL library

Project description

Contributors Forks Stargazers Issues LinkedIn


TimeSeriesQL-Matplotlib

A plotting backend for the TimeSeriesQL library

Table of Contents

About The Project

This project adds a matplotlib plotting backend for the TimeSeriesQL project.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

The requirements are in the requirements.txt file.

Installation

pip

pip install timeseriesql-matplotlib

manual

  1. Clone the timeseriesql-matplotlib
git clone https:://github.com/mbeale/timeseriesql-matplotlib.git
  1. Install library
cd timeseriesql-matplotlib
python setup.py install 

Usage

The charting library operates on TimeSeries objects. The Axes can be overriden to control the placement of the charts. All the below examples use the following code:

import matplotlib.pyplot as plt

from timeseriesql_matplotlib import MatplotlibTQL as mp
from timeseriesql.backends.csv_backend import CSVBackend

data = CSVBackend(x for x in "AAPL.csv")[:] #CSV of AAPL stock data header = (open, close, high, low, adj close)

Line Plot

mp().line_plot(data)
plt.show()

Line Plot Example

Stacked Plot

mp().stacked_plot(data)
plt.show()

Stacked Plot Example

Timebox Plot

mp().line_plot(data)
timebox_plot(data[:,0])
"""
the plot arguement defaults to auto but you can set a specific period
s    - second buckets
m    - minute buckets
h    - hour buckets
d    - day buckets
mth  - month buckets
y    - year buckets
"""

Timebox Plot Example

Distribution Plot

mp().dist_plot(data[:,0], percentiles=[25,75]) #percentiles are optional
plt.show()

Distribution Plot Example

Correlogram Plot

mp().correlogram_plot(data)
plt.show()

Correlogram Plot Example

Text Plot

mp().line_plot(data)
mp().text_plot(data[-1,0], title="A Nice Text Box", thresholds=[(0, 'green', 'white'), (20, 'cornflowerblue', 'white'), (None, 'darkorange', 'white')])

Text Plot Example

Layout Example

from matplotlib.gridspec import GridSpec

fig = plt.figure(constrained_layout=True, figsize=(20,20))

gs = GridSpec(4, 4, figure=fig)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[0, 3])
ax5 = fig.add_subplot(gs[1:3, :3])
ax6 = fig.add_subplot(gs[1, 3])
ax7 = fig.add_subplot(gs[2, 3])
ax8 = fig.add_subplot(gs[3, :2])
ax9 = fig.add_subplot(gs[3, 2:])


mp().text_plot(data[:,0].mean(), ax=ax1, title="Avg Close")
mp().text_plot(data[:,1].mean(), ax=ax2, title="Avg High")
mp().text_plot(data[:,2].mean(), ax=ax3, title="Avg Low")
mp().line_plot(data[:,0], ax = ax4)
mp().line_plot(data, ax=ax5)
mp().line_plot(data[:,1], ax=ax6)
mp().line_plot(data[:,2], ax=ax7)
mp().line_plot(data[:,3], ax=ax8)
mp().line_plot(data[:,4], ax=ax9)

Text Plot Example

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Michael Beale - michael.beale@gmail.com

Project Link: https://github.com/mbeale/timeseriesql-matplotlib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for timeseriesql-matplotlib, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size timeseriesql_matplotlib-0.0.2-py3-none-any.whl (7.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size timeseriesql-matplotlib-0.0.2.tar.gz (8.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page