Skip to main content

(Unofficial) PyTorch Image Models

Project description

PyTorch Image Models, etc

Introduction

For each competition, personal, or freelance project involving images + Convolution Neural Networks, I build on top of an evolving collection of code and models. This repo contains a (somewhat) cleaned up and paired down iteration of that code. Hopefully it'll be of use to others.

The work of many others is present here. I've tried to make sure all source material is acknowledged:

Models

I've included a few of my favourite models, but this is not an exhaustive collection. You can't do better than Cadene's collection in that regard. Most models do have pretrained weights from their respective sources or original authors.

Use the --model arg to specify model for train, validation, inference scripts. Match the all lowercase creation fn for the model you'd like.

Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

  • All models have a common default configuration interface and API for
    • accessing/changing the classifier - get_classifier and reset_classifier
    • doing a forward pass on just the features - forward_features
    • these makes it easy to write consistent network wrappers that work with any of the models
  • All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
  • The train script works in several process/GPU modes:
    • NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    • PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    • PyTorch w/ single GPU single process (AMP optional)
  • A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
  • A 'Test Time Pool' wrapper that can wrap any of the included models and usually provide improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
  • Training schedules and techniques that provide competitive results (Cosine LR, Random Erasing, Label Smoothing, etc)
  • Mixup (as in https://arxiv.org/abs/1710.09412) - currently implementing/testing
  • An inference script that dumps output to CSV is provided as an example

Results

A CSV file containing an ImageNet-1K validation results summary for all included models with pretrained weights and default configurations is located here

Self-trained Weights

I've leveraged the training scripts in this repository to train a few of the models with missing weights to good levels of performance. These numbers are all for 224x224 training and validation image sizing with the usual 87.5% validation crop.

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size
mixnet_xl 80.120 (19.880) 95.022 (4.978) 11.90M bicubic 224
efficientnet_b2 79.760 (20.240) 94.714 (5.286) 9.11M bicubic 260
resnext50d_32x4d 79.674 (20.326) 94.868 (5.132) 25.1M bicubic 224
mixnet_l 78.976 (21.024 94.184 (5.816) 7.33M bicubic 224
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.79M bicubic 240
resnext50_32x4d 78.512 (21.488) 94.042 (5.958) 25M bicubic 224
resnet50 78.470 (21.530) 94.266 (5.734) 25.6M bicubic 224
mixnet_m 77.256 (22.744) 93.418 (6.582) 5.01M bicubic 224
seresnext26_32x4d 77.104 (22.896) 93.316 (6.684) 16.8M bicubic 224
efficientnet_b0 76.912 (23.088) 93.210 (6.790) 5.29M bicubic 224
resnet26d 76.68 (23.32) 93.166 (6.834) 16M bicubic 224
mixnet_s 75.988 (24.012) 92.794 (7.206) 4.13M bicubic 224
mobilenetv3_100 75.634 (24.366) 92.708 (7.292) 5.5M bicubic 224
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.89M bicubic 224
resnet26 75.292 (24.708) 92.57 (7.43) 16M bicubic 224
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6M bilinear 224
resnet34 75.110 (24.890) 92.284 (7.716) 22M bilinear 224
seresnet34 74.808 (25.192) 92.124 (7.876) 22M bilinear 224
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.38M bicubic 224
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.42M bilinear 224
seresnet18 71.742 (28.258) 90.334 (9.666) 11.8M bicubic 224

Ported Weights

Model Prec@1 (Err) Prec@5 (Err) Param # Image Scaling Image Size Source
tf_efficientnet_b7 *tfp 84.480 (15.520) 96.870 (3.130) 66.35 bicubic 600 Google
tf_efficientnet_b7 84.420 (15.580) 96.906 (3.094) 66.35 bicubic 600 Google
tf_efficientnet_b6 *tfp 84.140 (15.860) 96.852 (3.148) 43.04 bicubic 528 Google
tf_efficientnet_b6 84.110 (15.890) 96.886 (3.114) 43.04 bicubic 528 Google
tf_efficientnet_b5 *tfp 83.694 (16.306) 96.696 (3.304) 30.39 bicubic 456 Google
tf_efficientnet_b5 83.688 (16.312) 96.714 (3.286) 30.39 bicubic 456 Google
tf_efficientnet_b4 83.022 (16.978) 96.300 (3.700) 19.34 bicubic 380 Google
tf_efficientnet_b4 *tfp 82.948 (17.052) 96.308 (3.692) 19.34 bicubic 380 Google
tf_efficientnet_b3 *tfp 81.576 (18.424) 95.662 (4.338) 12.23 bicubic 300 Google
tf_efficientnet_b3 81.636 (18.364) 95.718 (4.282) 12.23 bicubic 300 Google
gluon_senet154 81.224 (18.776) 95.356 (4.644) 115.09 bicubic 224
gluon_resnet152_v1s 81.012 (18.988) 95.416 (4.584) 60.32 bicubic 224
gluon_seresnext101_32x4d 80.902 (19.098) 95.294 (4.706) 48.96 bicubic 224
gluon_seresnext101_64x4d 80.890 (19.110) 95.304 (4.696) 88.23 bicubic 224
gluon_resnext101_64x4d 80.602 (19.398) 94.994 (5.006) 83.46 bicubic 224
tf_efficientnet_el 80.534 (19.466) 95.190 (4.810) 10.59 bicubic 300 Google
tf_efficientnet_el *tfp 80.476 (19.524) 95.200 (4.800) 10.59 bicubic 300 Google
gluon_resnet152_v1d 80.470 (19.530) 95.206 (4.794) 60.21 bicubic 224
gluon_resnet101_v1d 80.424 (19.576) 95.020 (4.980) 44.57 bicubic 224
gluon_resnext101_32x4d 80.334 (19.666) 94.926 (5.074) 44.18 bicubic 224
gluon_resnet101_v1s 80.300 (19.700) 95.150 (4.850) 44.67 bicubic 224
tf_efficientnet_b2 *tfp 80.188 (19.812) 94.974 (5.026) 9.11 bicubic 260 Google
tf_efficientnet_b2 80.086 (19.914) 94.908 (5.092) 9.11 bicubic 260 Google
gluon_resnet152_v1c 79.916 (20.084) 94.842 (5.158) 60.21 bicubic 224
gluon_seresnext50_32x4d 79.912 (20.088) 94.818 (5.182) 27.56 bicubic 224
gluon_resnet152_v1b 79.692 (20.308) 94.738 (5.262) 60.19 bicubic 224
gluon_xception65 79.604 (20.396) 94.748 (5.252) 39.92 bicubic 299
gluon_resnet101_v1c 79.544 (20.456) 94.586 (5.414) 44.57 bicubic 224
gluon_resnext50_32x4d 79.356 (20.644) 94.424 (5.576) 25.03 bicubic 224
gluon_resnet101_v1b 79.304 (20.696) 94.524 (5.476) 44.55 bicubic 224
tf_efficientnet_b1 *tfp 79.172 (20.828) 94.450 (5.550) 7.79 bicubic 240 Google
gluon_resnet50_v1d 79.074 (20.926) 94.476 (5.524) 25.58 bicubic 224
tf_efficientnet_em *tfp 78.958 (21.042) 94.458 (5.542) 6.90 bicubic 240 Google
tf_mixnet_l *tfp 78.846 (21.154) 94.212 (5.788) 7.33 bilinear 224 Google
tf_efficientnet_b1 78.826 (21.174) 94.198 (5.802) 7.79 bicubic 240 Google
gluon_inception_v3 78.804 (21.196) 94.380 (5.620) 27.16M bicubic 299 MxNet Gluon
tf_mixnet_l 78.770 (21.230) 94.004 (5.996) 7.33 bicubic 224 Google
tf_efficientnet_em 78.742 (21.258) 94.332 (5.668) 6.90 bicubic 240 Google
gluon_resnet50_v1s 78.712 (21.288) 94.242 (5.758) 25.68 bicubic 224
gluon_resnet50_v1c 78.010 (21.990) 93.988 (6.012) 25.58 bicubic 224
tf_inception_v3 77.856 (22.144) 93.644 (6.356) 27.16M bicubic 299 Tensorflow Slim
tf_efficientnet_es *tfp 77.616 (22.384) 93.750 (6.250) 5.44 bicubic 224 Google
gluon_resnet50_v1b 77.578 (22.422) 93.718 (6.282) 25.56 bicubic 224
adv_inception_v3 77.576 (22.424) 93.724 (6.276) 27.16M bicubic 299 Tensorflow Adv models
tf_efficientnet_es 77.264 (22.736) 93.600 (6.400) 5.44 bicubic 224 Google
tf_efficientnet_b0 *tfp 77.258 (22.742) 93.478 (6.522) 5.29 bicubic 224 Google
tf_mixnet_m *tfp 77.072 (22.928) 93.368 (6.632) 5.01 bilinear 224 Google
tf_mixnet_m 76.950 (23.050) 93.156 (6.844) 5.01 bicubic 224 Google
tf_efficientnet_b0 76.848 (23.152) 93.228 (6.772) 5.29 bicubic 224 Google
tf_mixnet_s *tfp 75.800 (24.200) 92.788 (7.212) 4.13 bilinear 224 Google
tf_mixnet_s 75.648 (24.352) 92.636 (7.364) 4.13 bicubic 224 Google
gluon_resnet34_v1b 74.580 (25.420) 91.988 (8.012) 21.80 bicubic 224
gluon_resnet18_v1b 70.830 (29.170) 89.756 (10.244) 11.69 bicubic 224

Models with *tfp next to them were scored with --tf-preprocessing flag.

The tf_efficientnet, tf_mixnet models require an equivalent for 'SAME' padding as their arch results in asymmetric padding. I've added this in the model creation wrapper, but it does come with a performance penalty.

Usage

Environment

All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x and 3.7.x. Little to no care has been taken to be Python 2.x friendly and I don't plan to support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment.

PyTorch versions 1.0 and 1.1 have been tested with this code.

I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:

conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.0

Pip

This package can be installed via pip. Currently, the model factory (timm.create_model) is the most useful component to use via a pip install.

Install (after conda env/install):

pip install timm

Use:

>>> import timm
>>> m = timm.create_model('mobilenetv3_100', pretrained=True)
>>> m.eval()

Scripts

A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release.

Training

The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a train and validation folder.

To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value:

./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 -j 4

NOTE: NVIDIA APEX should be installed to run in per-process distributed via DDP or to enable AMP mixed precision with the --amp flag

Validation / Inference

Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script.

To validate with the model's pretrained weights (if they exist):

python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained

To run inference from a checkpoint:

python inference.py /imagenet/validation/ --model mobilenetv3_100 --checkpoint ./output/model_best.pth.tar

TODO

A number of additions planned in the future for various projects, incl

  • Do a model performance (speed + accuracy) benchmarking across all models (make runable as script)
  • Add usage examples to comments, good hyper params for training
  • Comments, cleanup and the usual things that get pushed back

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for timm, version 0.1.14
Filename, size File type Python version Upload date Hashes
Filename, size timm-0.1.14-py3-none-any.whl (113.5 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size timm-0.1.14.tar.gz (88.1 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page