high level interface for tinygrad
Project description
Tinygrad Lightning - WIP
Pytorch Lightning clone for tinygrad. Easy data loading, training, logging and checkpointing.
Example
import tinygrad_lightning as pl
### model ###
class TinyBobNet(pl.LightningModule):
def __init__(self, filters=64):
self.model = ResNet18(num_classes=10)
def forward(self, input: Tensor):
return self.model(input)
def configure_optimizers(self):
return optim.SGD(optim.get_parameters(self), lr=5e-3, momentum=0.9)
def training_step(self, train_batch, batch_idx):
x, y = train_batch
for image in x:
self.log_image("inputs", image)
out = self.forward(x)
cat = np.argmax(out.cpu().numpy(), axis=-1)
accuracy = (cat == y).mean()
loss = sparse_categorical_crossentropy(out, y)
loss_value = loss.detach().cpu().numpy()
# automatically logs to train/loss, ...
self.log("loss", loss_value.mean())
self.log("accuracy", accuracy)
return loss
def validation_step(self, val_batch, val_idx):
x, y = val_batch
out = self.forward(x)
cat = np.argmax(out.cpu().numpy(), axis=-1)
accuracy = (cat == y).mean()
loss = sparse_categorical_crossentropy(out, y)
loss_value = loss.detach().cpu().numpy()
# automatically logs to val/loss, ...
self.log("loss", loss_value.mean())
self.log("accuracy", accuracy)
return loss
batch_size = 4
test_ds = MnistDataset(variant='test') # same as torch dataset
train_loader = pl.DataLoader(train_ds, batch_size, workers=1, shuffle=True)
# define your model
model = TinyBobNet()
callbacks=[pl.TQDMProgressBar(refresh_rate=10), pl.TensorboardLogger("./logdir")]
trainer = pl.Trainer(model, train_loader=train_loader, callbacks=callbacks)
trainer.fit(epochs=1) # train_batches=2, val_batches=4
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tinygrad_lightning-0.0.1.tar.gz
.
File metadata
- Download URL: tinygrad_lightning-0.0.1.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
765e177141ae3d6fe71a826b601e19cb69d49b15c999a5761c9897c8cb19fff9
|
|
MD5 |
ef7f621c1647a64acc955258f80c69f8
|
|
BLAKE2b-256 |
bd15d0ff0ce512ad9f52ffc6d5a9b8abc1c00d5c7eedcf529272e80bd029a9a9
|
File details
Details for the file tinygrad_lightning-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: tinygrad_lightning-0.0.1-py3-none-any.whl
- Upload date:
- Size: 9.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4f952659e0830df3c561724dd4b75ee86496821b668ad658a6eddfa4b238be10
|
|
MD5 |
1fbf55a3b606e96942e989e27dd03713
|
|
BLAKE2b-256 |
2543c5046a678db116c31f977c78d6a1b374113e05955e20416fd3038e1f75e3
|