Skip to main content

Simplify numerical association rule mining

Project description

tinyNARM

tinyNARM is an experimental effort in approaching/tailoring the classical Numerical Association Rule Mining (NARM) to limited hardware devices, e.g., ESP32 microcontrollers so that devices do not need to depend on remote servers for making decisions. Motivation mainly lies in smart agriculture, where Internet connectivity is unavailable in rural areas.

The current repository hosts a tinyNARM algorithm prototype initially developed in Python for fast prototyping.

🔍 Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format,
  • discretizing numerical features to discrete classes,
  • association rule mining using the tinynarm approach,
  • easy comparison with the NiaARM approach.

📦 Installation

pip

To install tinyNARM with pip, use:

pip install tinynarm

🚀 Usage

Basic run

from tinynarm import TinyNarm
from tinynarm.utils import Utils

tnarm = TinyNarm("new_dataset.csv")
tnarm.create_rules()

postprocess = Utils(tnarm.rules)
postprocess.add_fitness()
postprocess.sort_rules()
postprocess.rules_to_csv("rules.csv")
postprocess.generate_statistics()
postprocess.generate_stats_report(20)

Discretization

from tinynarm.discretization import Discretization

dataset = Discretization("datasets/sportydatagen.csv", 5)
data = dataset.generate_dataset()
dataset.dataset_to_csv(data, "new_dataset.csv")

🔑 License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

📄 Cite us

Fister Jr, I., Fister, I., Galvez, A., & Iglesias, A. (2023, August). TinyNARM: Simplifying Numerical Association Rule Mining for Running on Microcontrollers. In International Conference on Soft Computing Models in Industrial and Environmental Applications (pp. 122-131). Cham: Springer Nature Switzerland.

📝 References

[1] I. Fister Jr., A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Stupan, Ž., Fister, I. Jr. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tinynarm-0.3.2.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

tinynarm-0.3.2-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file tinynarm-0.3.2.tar.gz.

File metadata

  • Download URL: tinynarm-0.3.2.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.13.1 Linux/6.12.8-200.fc41.x86_64

File hashes

Hashes for tinynarm-0.3.2.tar.gz
Algorithm Hash digest
SHA256 9828242c53b206395296e7fde89195a2bec32051ff8be76c224d14d7e5690478
MD5 0b7b06c43f589d0e7261b2afd68f6f52
BLAKE2b-256 72820a28f4e7d943b4b8950058ea5edc793dc5d97b41b526541adebe3dc22682

See more details on using hashes here.

File details

Details for the file tinynarm-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: tinynarm-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.13.1 Linux/6.12.8-200.fc41.x86_64

File hashes

Hashes for tinynarm-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6b3eb72fe5b9a9b7df7126c16ddf79a8c7ec1c7e23b57028561b345de65e5f18
MD5 7a9110ac243c61e3c9c83712934dda20
BLAKE2b-256 0d5f5ca1500fb3814347465e4268f94571accc8479ea737e97284cba711d732d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page