Skip to main content

Pre-train Static Embedders

Project description

Tokenlearn

Tokenlearn is a method to pre-train Model2Vec.

The method is described in detail in our Tokenlearn blogpost.

Quickstart

Install the package with:

pip install tokenlearn

The basic usage of Tokenlearn consists of two CLI scripts: featurize and train.

Tokenlearn is trained using means from a sentence transformer. To create means, the tokenlearn-featurize CLI can be used:

python3 -m tokenlearn.featurize --model-name "baai/bge-base-en-v1.5" --output-dir "data/c4_features"

NOTE: the default model is trained on the C4 dataset. If you want to use a different dataset, the following code can be used:

python3 -m tokenlearn.featurize \
    --model-name "baai/bge-base-en-v1.5" \
    --output-dir "data/c4_features" \
    --dataset-path "allenai/c4" \
    --dataset-name "en" \
    --dataset-split "train"

To train a model on the featurized data, the tokenlearn-train CLI can be used:

python3 -m tokenlearn.train --model-name "baai/bge-base-en-v1.5" --data-path "data/c4_features" --save-path "<path-to-save-model>"

Training will create two models:

  • The base trained model.
  • The base model with weighting applied. This is the model that should be used for downstream tasks.

NOTE: the code assumes that the padding token ID in your tokenizer is 0. If this is not the case, you will need to modify the code.

Evaluation

To evaluate a model, you can use the following command after installing the optional evaluation dependencies:

pip install evaluation@git+https://github.com/MinishLab/evaluation@main
from model2vec import StaticModel

from evaluation import CustomMTEB, get_tasks, parse_mteb_results, make_leaderboard, summarize_results
from mteb import ModelMeta

# Get all available tasks
tasks = get_tasks()
# Define the CustomMTEB object with the specified tasks
evaluation = CustomMTEB(tasks=tasks)

# Load a trained model
model_name = "tokenlearn_model"
model = StaticModel.from_pretrained(model_name)

# Optionally, add model metadata in MTEB format
model.mteb_model_meta = ModelMeta(
            name=model_name, revision="no_revision_available", release_date=None, languages=None
        )

# Run the evaluation
results = evaluation.run(model, eval_splits=["test"], output_folder=f"results")

# Parse the results and summarize them
parsed_results = parse_mteb_results(mteb_results=results, model_name=model_name)
task_scores = summarize_results(parsed_results)

# Print the results in a leaderboard format
print(make_leaderboard(task_scores))

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tokenlearn-0.2.1.tar.gz (149.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

tokenlearn-0.2.1-py3-none-any.whl (11.9 kB view details)

Uploaded Python 3

File details

Details for the file tokenlearn-0.2.1.tar.gz.

File metadata

  • Download URL: tokenlearn-0.2.1.tar.gz
  • Upload date:
  • Size: 149.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for tokenlearn-0.2.1.tar.gz
Algorithm Hash digest
SHA256 b1cdb5cb1bb9f60d132143cf78d8b38db69a85f044157788c40bd48315ea82be
MD5 c7adf3286d5c12d6c68afd42f72e4e6b
BLAKE2b-256 124c9dd1c2383c517442f666ea2419d02bf5aa522fba84e5da8b09294e0d1399

See more details on using hashes here.

File details

Details for the file tokenlearn-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: tokenlearn-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 11.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for tokenlearn-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6961ef09418701cdb4badf83139d7aadf08c7bbfb5577e0276f1cb8e9b087792
MD5 031f0aadeb940c4373038376bcb527a9
BLAKE2b-256 8cdaddc617c9f6026c5ae59a0aae6dbaebf6dfc2c81b9c8cfe4ff75e5518eca7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page