Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Magic decorator syntax for asynchronous code.

Project Description

Magic decorator syntax for asynchronous code in Python

Installation

Tomorrow is conveniently available via pip:

pip install tomorrow

or installable via git clone and setup.py

git clone git@github.com:madisonmay/Tomorrow.git
sudo python setup.py install

Usage

The tomorrow library enables you to utilize the benefits of multi-threading with minimal concern about the implementation details.

Behind the scenes, the library is a thin wrapper around the Future object in concurrent.futures that resolves the Future whenever you try to access any of its attributes.

Enough of the implementation details, let’s take a look at how simple it is to speed up an inefficient chunk of blocking code with minimal effort.

Naive Web Scraper

You’ve collected a list of urls and are looking to download the HTML of the lot. The following is a perfectly reasonable first stab at solving the task.

For the following examples, we’ll be using the top sites from the Alexa rankings.

urls = [
    'http://google.com',
    'http://facebook.com',
    'http://youtube.com',
    'http://baidu.com',
    'http://yahoo.com',
]

Right then, let’s get on to the code.

import time
import requests

def download(url):
    return requests.get(url)

if __name__ == "__main__":

    start = time.time()
    responses = [download(url) for url in urls]
    html = [response.text for response in responses]
    end = time.time()
    print "Time: %f seconds" % (end - start)

More Efficient Web Scraper

Using tomorrow’s decorator syntax, we can define a function that executes in multiple threads. Individual calls to download are non-blocking, but we can largely ignore this fact and write code identically to how we would in a synchronous paradigm.

import time
import requests

from tomorrow import threads

@threads(5)
def download(url):
    return requests.get(url)

if __name__ == "__main__":
    import time

    start = time.time()
    responses = [download(url) for url in urls]
    html = [response.text for response in responses]
    end = time.time()
    print "Time: %f seconds" % (end - start)

Awesome! With a single line of additional code (and no explicit threading logic) we can now download websites ~10x as efficiently.

You can also optionally pass in a timeout argument, to prevent hanging on a task that is not guaranteed to return.

import time

from tomorrow import threads

@threads(1, timeout=0.1)
def raises_timeout_error():
    time.sleep(1)

if __name__ == "__main__":
    print raises_timeout_error()

How Does it Work?

Feel free to read the source for a peek behind the scenes – it’s less that 50 lines of code.

Release History

Release History

This version
History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
tomorrow-0.2.4.tar.gz (3.0 kB) Copy SHA256 Checksum SHA256 Source Jan 2, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting