Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

A Toolkit for Training, Tracking and Saving PyTorch Models

Project description


License Documentation Status Downloads PyPI version

A Toolkit for training pytorch models, which has three features:

  • Tracking environments, dependency, implementations and checkpoints;
  • Providing a logger wrapper with two handlers (to std and file);
  • Supporting automatic device selection;
  • Providing a tensorboard wrapper;
  • Providing a spreadsheet writer to automatically summarizing notes and results;

We are in an early-release beta. Expect some adventures and rough edges.

Quick Links


To install via pypi:

pip install torch-scope

To build from source:

pip install git+


git clone
cd Torch-Scope
python install


An example is provided as below, please read the doc for a detailed api explaination.

  • set up the git in the server & add all source file to the git
  • use tensorboard to track the model stats (tensorboard --logdir PATH/log/ --port ####)
from torch_scope import wrapper
logger = logging.getLogger(__name__)

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('--checkpoint_path', type=str, ...)
    parser.add_argument('--name', type=str, ...)
    parser.add_argument('--gpu', type=str, ...)
    args = parser.parse_args()

    pw = wrapper(os.path.join(args.checkpoint_path,, name = args.log_dir, enable_git_track = False)
    # Or if the current folder is binded with git, you can turn on the git tracking as below
    # pw = wrapper(os.path.join(args.checkpoint_path,, name = args.log_dir, enable_git_track = True)
    # if you properly set the path to credential_path and want to use spreadsheet writer, turn on sheet tracking as below
    # pw = wrapper(os.path.join(args.checkpoint_path,, name = args.log_dir, \
    #             enable_git_track=args.git_tracking, sheet_track_name=args.spreadsheet_name, \ 
    #             credential_path="/data/work/jingbo/ll2/Torch-Scope/torch-scope-8acf12bee10f.json")
    gpu_index = pw.auto_device() if 'auto' == args.gpu else int(args.gpu)
    device = torch.device("cuda:" + str(gpu_index) if gpu_index >= 0 else "cpu")

    pw.save_configue(args) # dump the config to config.json

    # if the spreadsheet writer is enabled, you can add a description about the current model
    # pw.add_description(args.description) # would be plotted to std & file if level is 'info' or lower


    batch_index = 0

    for index in range(epoch):


    	for instance in ... :

    		loss = ...

    		tot_loss += loss.detach()

    		if batch_index % ... = 0:
    			pw.add_loss_vs_batch({'loss': tot_loss / ..., ...}, batch_index, False)
    			pw.add_model_parameter_stats(model, batch_index, save=True)
    			pw.add_model_update_stats(model, batch_index)
    			tot_loss = 0

    		batch_index += 1

    	dev_score = ...
    	pw.add_loss_vs_batch({'dev_score': dev_score, ...}, index, True)

    	if dev_score > best_score:
    		pw.save_checkpoint(model, optimizer, is_best = True)
    		best_score = dev_score
    		pw.save_checkpoint(model, optimizer, is_best = False)

Advanced Usage

Auto Device

Git Tracking

Spreadsheet Logging

Share the spreadsheet with the following account And access the table with its name.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for torch-scope, version 0.5.4
Filename, size File type Python version Upload date Hashes
Filename, size torch-scope-0.5.4.tar.gz (14.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page