Skip to main content

Input Embedding Training as Similarity Learning Problem (SimiVec)

Project description

PyPI version Total alerts Language grade: Python

torch-simivec : Multi-label Embedding Training as Similarity Learning Problem

Train an input multi-label embedding as a similarity learning problem.

Usage

Modelling

from torch_simivec import SimiLoss
import torch
import numpy as np

# init the model
model = SimiLoss(
    tokenlist_size=10,
    embedding_size=256,
    context_size=4
)

# create a positive & negative example
X_pos = torch.tensor([[[0, 2, 9], [6, 0, 8], [1, 3, 4], [7, 8, 9]]])
y_pos = torch.tensor([[1, 4, 2]])
np.random.seed(42)
X_neg = torch.tensor(np.random.permutation(X_pos))
y_neg = torch.tensor(np.random.permutation(y_pos))

# compute loss
loss = model(y_pos, X_pos, y_neg, X_neg)
print(loss)

Training

optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
avg_loss = .0
for epoch in range(50):
    optimizer.zero_grad()
    loss = model(y_pos, X_pos, y_neg, X_neg)
    loss.backward()
    optimizer.step()
    avg_loss += loss.item()
    if (epoch % 10) == 9:
        print(f"epoch {epoch + 1} | loss: {avg_loss / 10.}")
        avg_loss = .0

Appendix

Installation

The torch-simivec git repo is available as PyPi package

pip install torch-simivec
pip install git+ssh://git@github.com/ulf1/torch-simivec.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')

  • Run Unit Tests: PYTHONPATH=. pytest

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-simivec-0.2.0.tar.gz (8.8 kB view details)

Uploaded Source

File details

Details for the file torch-simivec-0.2.0.tar.gz.

File metadata

  • Download URL: torch-simivec-0.2.0.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/62.1.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.7.9

File hashes

Hashes for torch-simivec-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fcbfb98a527bbb228db33c62f960492cbbf6f3d48bad7390f4adbbdcde4b70b9
MD5 5c7f2f40e07ba2c0b754dd7ef10dc6cf
BLAKE2b-256 43b1f7422f0fa67ad74652e4618f0da10f2e2af119923b405172e0f3ebb1b5ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page