Skip to main content

One line functions for common tasks

Project description

Utilities for simple needs

# Time it
from torch_snippets import *
CPU times: user 1.57 s, sys: 1.59 s, total: 3.16 s
Wall time: 731 ms

Below we are trying to extract the __all__ list from all Python files of the torch_snippets directory.
Through the code, you can already see some of the elements of torch-snippets in action.

import ast

os.environ[
    "AD_MAX_ITEMS"
] = (  # os is already imported by torch_snippets, along with many other useful libraries
    "1000"  # Set the maximum number of items to display in the AD object
)


@tryy  # This is a decorator that catches exceptions
def extract_all_list(file_path):
    file = readfile(file_path, silent=True)  # Read the file
    tree = ast.parse(file, filename=file_path)

    for node in tree.body:
        if isinstance(node, ast.Assign):
            for target in node.targets:
                if isinstance(target, ast.Name) and target.id == "__all__":
                    if isinstance(node.value, ast.List):
                        all_list = [
                            elt.value
                            for elt in node.value.elts
                            if isinstance(elt, ast.Constant)
                        ]
                        return all_list
    return None


def print_all_lists_in_directory(directory):
    dir = P(directory)  # Create a pathlib.Path object
    for f in dir.ls():  # Iterate over all files in the directory
        if f.extn == "py" and f.stem not in [
            "__init__",
            "_nbdev",
        ]:  # If it's a Python file and not __init__.py
            all_list = extract_all_list(f)
            if all_list is not None and len(all_list) > 0:
                h2(f.stem)  # Print the name of the file as a heading in jupyter
                print(
                    AD({"items": all_list})
                )  # AD is an intelligent dictionary that can display itself nicely
print(P().resolve())
/Users/yeshwanth/Code/Personal/torch_snippets/nbs
# Specify the directory containing the Python files
directory_path = "../torch_snippets"
print_all_lists_in_directory(directory_path)

misc

```↯ AttrDict ↯
items[]
  0 - Timer (🏷️ str)
  1 - track2 (🏷️ str)
  2 - summarize_input (🏷️ str)
  3 - timeit (🏷️ str)
  4 - io (🏷️ str)
  5 - tryy (🏷️ str)

```

load_defaults

```↯ AttrDict ↯
items[]
  0 - ifnone (🏷️ str)
  1 - exists (🏷️ str)
  2 - loadifexists (🏷️ str)

```

text_utils

```↯ AttrDict ↯
items[]
  0 - textify (🏷️ str)
  1 - find_lines (🏷️ str)
  2 - find_blocks (🏷️ str)
  3 - find_substring (🏷️ str)
  4 - get_line_data_from_word_data (🏷️ str)
  5 - edit_distance_path (🏷️ str)
  6 - group_blocks (🏷️ str)

```

paths

```↯ AttrDict ↯
items[]
  0 - valid_methods (🏷️ str)
  1 - P (🏷️ str)
  2 - ls (🏷️ str)
  3 - print_folder_summary (🏷️ str)
  4 - dill (🏷️ str)
  5 - input_to_str (🏷️ str)
  6 - output_to_path (🏷️ str)
  7 - process_f (🏷️ str)
  8 - get_fs (🏷️ str)
  9 - P0 (🏷️ str)
  10 - stem (🏷️ str)
  11 - stems (🏷️ str)
  12 - extn (🏷️ str)
  13 - remove_file (🏷️ str)
  14 - isdir (🏷️ str)
  15 - makedir (🏷️ str)
  16 - fname (🏷️ str)
  17 - fname2 (🏷️ str)
  18 - parent (🏷️ str)
  19 - Glob (🏷️ str)
  20 - find (🏷️ str)
  21 - zip_files (🏷️ str)
  22 - unzip_file (🏷️ str)
  23 - list_zip (🏷️ str)
  24 - md5 (🏷️ str)
  25 - remove_duplicates (🏷️ str)
  26 - common_items (🏷️ str)
  27 - folder_summary (🏷️ str)
  28 - readlines (🏷️ str)
  29 - readfile (🏷️ str)
  30 - writelines (🏷️ str)
  31 - tree (🏷️ str)
  32 - folder_structure_to_dict (🏷️ str)
  33 - folder_structure_to_json (🏷️ str)
  34 - rename_batch (🏷️ str)
  35 - dumpdill (🏷️ str)
  36 - loaddill (🏷️ str)

```

charts

```↯ AttrDict ↯
items[]
  0 - alt (🏷️ str)
  1 - Chart (🏷️ str)
  2 - CM (🏷️ str)
  3 - radar (🏷️ str)
  4 - confusion_matrix (🏷️ str)
  5 - spider (🏷️ str)
  6 - upsetaltair_top_level_configuration (🏷️ str)
  7 - UpSetAltair (🏷️ str)

```

pdf_loader

```↯ AttrDict ↯
items[]
  0 - PDF (🏷️ str)
  1 - dump_pdf_images (🏷️ str)
  2 - preview_pdf (🏷️ str)

```

interactive_show

```↯ AttrDict ↯
items[]
  0 - COLORS (🏷️ str)
  1 - to_networkx (🏷️ str)
  2 - plot_image (🏷️ str)
  3 - plot_graph (🏷️ str)
  4 - tonp (🏷️ str)
  5 - tolist (🏷️ str)
  6 - convert_to_nx (🏷️ str)
  7 - viz2 (🏷️ str)
  8 - df2graph_nodes (🏷️ str)
  9 - ishow (🏷️ str)

```

registry

```↯ AttrDict ↯
items[]
  0 - Config (🏷️ str)
  1 - AttrDict (🏷️ str)
  2 - registry (🏷️ str)
  3 - tryeval (🏷️ str)
  4 - parse_base (🏷️ str)
  5 - parse (🏷️ str)
  6 - parse_and_resolve (🏷️ str)
  7 - parse_string (🏷️ str)

```

markup2

```↯ AttrDict ↯
items[]
  0 - AD (🏷️ str)
  1 - Config (🏷️ str)
  2 - isnamedtupleinstance (🏷️ str)
  3 - unpack (🏷️ str)
  4 - AttrDict (🏷️ str)
  5 - pretty_json (🏷️ str)
  6 - read_json (🏷️ str)
  7 - write_json (🏷️ str)
  8 - write_jsonl (🏷️ str)
  9 - read_jsonl (🏷️ str)
  10 - read_yaml (🏷️ str)
  11 - write_yaml (🏷️ str)
  12 - read_xml (🏷️ str)
  13 - write_xml (🏷️ str)

```

inspector

```↯ AttrDict ↯
items[]
  0 - inspect (🏷️ str)

```

torch_loader

```↯ AttrDict ↯
items[]
  0 - torch (🏷️ str)
  1 - th (🏷️ str)
  2 - torchvision (🏷️ str)
  3 - T (🏷️ str)
  4 - transforms (🏷️ str)
  5 - nn (🏷️ str)
  6 - np (🏷️ str)
  7 - F (🏷️ str)
  8 - Dataset (🏷️ str)
  9 - DataLoader (🏷️ str)
  10 - optim (🏷️ str)
  11 - Report (🏷️ str)
  12 - Reshape (🏷️ str)
  13 - Permute (🏷️ str)
  14 - device (🏷️ str)
  15 - save_torch_model_weights_from (🏷️ str)
  16 - load_torch_model_weights_to (🏷️ str)
  17 - detach (🏷️ str)
  18 - cat_with_padding (🏷️ str)

```

logger

```↯ AttrDict ↯
items[]
  0 - console (🏷️ str)
  1 - reset_logger_width (🏷️ str)
  2 - logger (🏷️ str)
  3 - Trace (🏷️ str)
  4 - Debug (🏷️ str)
  5 - Info (🏷️ str)
  6 - Warn (🏷️ str)
  7 - Excep (🏷️ str)
  8 - warn_mode (🏷️ str)
  9 - info_mode (🏷️ str)
  10 - debug_mode (🏷️ str)
  11 - trace_mode (🏷️ str)
  12 - excep_mode (🏷️ str)
  13 - in_warn_mode (🏷️ str)
  14 - in_info_mode (🏷️ str)
  15 - in_debug_mode (🏷️ str)
  16 - in_trace_mode (🏷️ str)
  17 - in_excep_mode (🏷️ str)
  18 - frames (🏷️ str)
  19 - get_console (🏷️ str)
  20 - reset_logger (🏷️ str)
  21 - get_logger_level (🏷️ str)
  22 - logger_mode (🏷️ str)
  23 - in_logger_mode (🏷️ str)
  24 - notify_waiting (🏷️ str)

```

markup

```↯ AttrDict ↯
items[]
  0 - AttrDict (🏷️ str)
  1 - json (🏷️ str)
  2 - Config (🏷️ str)
  3 - isnamedtupleinstance (🏷️ str)
  4 - unpack (🏷️ str)
  5 - hash_tensor (🏷️ str)
  6 - hash_pandas_dataframe (🏷️ str)
  7 - AttrDictDeprecated (🏷️ str)
  8 - decompose (🏷️ str)
  9 - pretty_json (🏷️ str)
  10 - read_json (🏷️ str)
  11 - write_json (🏷️ str)
  12 - write_jsonl (🏷️ str)
  13 - read_jsonl (🏷️ str)
  14 - read_yaml (🏷️ str)
  15 - write_yaml (🏷️ str)
  16 - read_xml (🏷️ str)
  17 - write_xml (🏷️ str)

```

sklegos

```↯ AttrDict ↯
items[]
  0 - ColumnSelector (🏷️ str)
  1 - GroupedPredictor (🏷️ str)
  2 - EstimatorTransformer (🏷️ str)
  3 - train_test_split (🏷️ str)
  4 - MakeFrame (🏷️ str)
  5 - ImputeMissingValues (🏷️ str)
  6 - LambdaTransformer (🏷️ str)
  7 - Cat2Num (🏷️ str)
  8 - SplitDateColumn (🏷️ str)

```

ipython

```↯ AttrDict ↯
items[]
  0 - save_notebook (🏷️ str)
  1 - backup_this_notebook (🏷️ str)
  2 - backup_all_notebooks (🏷️ str)
  3 - backup_folders_of_nbs (🏷️ str)
  4 - display_dfs_side_by_side (🏷️ str)
  5 - show_big_dataframe (🏷️ str)
  6 - h1 (🏷️ str)
  7 - h2 (🏷️ str)
  8 - h3 (🏷️ str)
  9 - h4 (🏷️ str)
  10 - h5 (🏷️ str)
  11 - h6 (🏷️ str)
  12 - store_scrap (🏷️ str)
  13 - shutdown_current_notebook (🏷️ str)

```

../torch_snippets/loader.py:532: SyntaxWarning: invalid escape sequence '\$'
  puttext(ax, text.replace("$", "\$"), tuple(bbs[ix][:2]), size=text_sz)

loader

```↯ AttrDict ↯
items[]
  0 - B (🏷️ str)
  1 - Blank (🏷️ str)
  2 - batchify (🏷️ str)
  3 - C (🏷️ str)
  4 - choose (🏷️ str)
  5 - common (🏷️ str)
  6 - crop_from_bb (🏷️ str)
  7 - diff (🏷️ str)
  8 - E (🏷️ str)
  9 - flatten (🏷️ str)
  10 - Image (🏷️ str)
  11 - jitter (🏷️ str)
  12 - L (🏷️ str)
  13 - lzip (🏷️ str)
  14 - line (🏷️ str)
  15 - lines (🏷️ str)
  16 - to_absolute (🏷️ str)
  17 - to_relative (🏷️ str)
  18 - enlarge_bbs (🏷️ str)
  19 - shrink_bbs (🏷️ str)
  20 - logger (🏷️ str)
  21 - np (🏷️ str)
  22 - now (🏷️ str)
  23 - nunique (🏷️ str)
  24 - os (🏷️ str)
  25 - pad (🏷️ str)
  26 - pd (🏷️ str)
  27 - pdfilter (🏷️ str)
  28 - pdb (🏷️ str)
  29 - PIL (🏷️ str)
  30 - print (🏷️ str)
  31 - puttext (🏷️ str)
  32 - randint (🏷️ str)
  33 - rand (🏷️ str)
  34 - re (🏷️ str)
  35 - read (🏷️ str)
  36 - readPIL (🏷️ str)
  37 - rect (🏷️ str)
  38 - resize (🏷️ str)
  39 - rotate (🏷️ str)
  40 - see (🏷️ str)
  41 - show (🏷️ str)
  42 - store_attr (🏷️ str)
  43 - subplots (🏷️ str)
  44 - sys (🏷️ str)
  45 - toss (🏷️ str)
  46 - track (🏷️ str)
  47 - tqdm (🏷️ str)
  48 - Tqdm (🏷️ str)
  49 - trange (🏷️ str)
  50 - unique (🏷️ str)
  51 - uint (🏷️ str)
  52 - write (🏷️ str)
  53 - BB (🏷️ str)
  54 - bbfy (🏷️ str)
  55 - xywh2xyXY (🏷️ str)
  56 - df2bbs (🏷️ str)
  57 - bbs2df (🏷️ str)
  58 - Info (🏷️ str)
  59 - Warn (🏷️ str)
  60 - Debug (🏷️ str)
  61 - Excep (🏷️ str)
  62 - reset_logger (🏷️ str)
  63 - get_logger_level (🏷️ str)
  64 - in_debug_mode (🏷️ str)
  65 - debug_mode (🏷️ str)
  66 - typedispatch (🏷️ str)
  67 - defaultdict (🏷️ str)
  68 - Counter (🏷️ str)
  69 - dcopy (🏷️ str)
  70 - patch_to (🏷️ str)
  71 - split (🏷️ str)
  72 - train_test_split (🏷️ str)
  73 - init_plt (🏷️ str)
  74 - init_cv2 (🏷️ str)

```

imgaug_loader

```↯ AttrDict ↯
items[]
  0 - do (🏷️ str)
  1 - bw (🏷️ str)
  2 - rotate (🏷️ str)
  3 - pad (🏷️ str)
  4 - get_size (🏷️ str)
  5 - rescale (🏷️ str)
  6 - crop (🏷️ str)
  7 - imgaugbbs2bbs (🏷️ str)
  8 - bbs2imgaugbbs (🏷️ str)

```

dates

```↯ AttrDict ↯
items[]
  0 - make_uniform_date_format (🏷️ str)
  1 - ALL_DATE_FORMATS (🏷️ str)
  2 - are_dates_equal (🏷️ str)
  3 - today (🏷️ str)

```

profiler

```↯ AttrDict ↯
items[]
  0 - time_profiler (🏷️ str)

```

bokeh_loader

```↯ AttrDict ↯
items[]
  0 - parse_sz (🏷️ str)
  1 - get_bplot (🏷️ str)

```

bb_utils

```↯ AttrDict ↯
items[]
  0 - randint (🏷️ str)
  1 - BB (🏷️ str)
  2 - df2bbs (🏷️ str)
  3 - bbs2df (🏷️ str)
  4 - bbfy (🏷️ str)
  5 - jitter (🏷️ str)
  6 - compute_eps (🏷️ str)
  7 - enlarge_bbs (🏷️ str)
  8 - shrink_bbs (🏷️ str)
  9 - iou (🏷️ str)
  10 - compute_distance_matrix (🏷️ str)
  11 - compute_distances (🏷️ str)
  12 - split_bb_to_xyXY (🏷️ str)
  13 - combine_xyXY_to_bb (🏷️ str)
  14 - is_absolute (🏷️ str)
  15 - is_relative (🏷️ str)
  16 - to_relative (🏷️ str)
  17 - to_absolute (🏷️ str)
  18 - merge_by_bb (🏷️ str)
  19 - isin (🏷️ str)

```

adapters

```↯ AttrDict ↯
items[]
  0 - np_2_b64 (🏷️ str)
  1 - b64_2_np (🏷️ str)
  2 - b64_2_file (🏷️ str)
  3 - bytes_2_file (🏷️ str)
  4 - file_2_bytes (🏷️ str)
  5 - csvs_2_cvat (🏷️ str)
  6 - cvat_2_csvs (🏷️ str)
  7 - df_2_yolo (🏷️ str)
  8 - yolo_2_df (🏷️ str)

```

decorators

```↯ AttrDict ↯
items[]
  0 - format (🏷️ str)
  1 - warn_on_fail (🏷️ str)
  2 - timeit (🏷️ str)
  3 - io (🏷️ str)
  4 - check_kwargs_not_none (🏷️ str)

```

Project details


Release history Release notifications | RSS feed

This version

0.560

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_snippets-0.560.tar.gz (97.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

torch_snippets-0.560-py3-none-any.whl (110.3 kB view details)

Uploaded Python 3

File details

Details for the file torch_snippets-0.560.tar.gz.

File metadata

  • Download URL: torch_snippets-0.560.tar.gz
  • Upload date:
  • Size: 97.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for torch_snippets-0.560.tar.gz
Algorithm Hash digest
SHA256 0fbea80ba457162c833cc4657257848b4056e692ebc326a673804fdb8d29512b
MD5 af57ced26587fa18ad4cb01175fb9733
BLAKE2b-256 0d76914564ae4b12b8f6bb951d3ebfcc4872206bb653f8b09ffcdcefb249ec03

See more details on using hashes here.

File details

Details for the file torch_snippets-0.560-py3-none-any.whl.

File metadata

  • Download URL: torch_snippets-0.560-py3-none-any.whl
  • Upload date:
  • Size: 110.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for torch_snippets-0.560-py3-none-any.whl
Algorithm Hash digest
SHA256 bcf5d62b6465b9dd655bd4a8e113745fc04230e265030628d11789ca60e08e5b
MD5 dc5818aa9f17ed6b4616553a0bcf1bb6
BLAKE2b-256 1f44436face9f925356c8a158b99d1abaac10fe22c122b33972d9f9e7f6c2dd5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page