Skip to main content

Common Utils for PyTorch

Project description

torch-utils Build Status codecov PyPI version

Common Utils for PyTorch.

Installation

Need Python 3.6+.

pip install torch-utils

Usage

  1. Accuracy
import torch_utils

# ...

top_1, top_5 = torch_utils.accuracy(output=..., target=..., top_k=(1, 5))
  1. Meter
import torch_utils

loss_meter = torch_utils.AverageMeter(name='Meter', length=10)
loss_meter.update(val=...)

print(loss_meter.avg, loss_meter.val)
print(loss_meter)
#> Test 0.00 (0.00)

progress_meter = torch_utils.ProgressMeter(total_steps=100, total_epochs=10)
progress_meter.update(step=10)
assert progress_meter.step == 10
assert progress_meter.ratio == 0.1
assert progress_meter.epoch == 1
print(progress_meter)
#> Step 10/100=10.0% (1/10)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-utils-0.1.2.tar.gz (4.9 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page