Skip to main content

Pytorch wrapper for performing grid-search

Project description

torchgs

Pytorch wrapper for grid search of hyperparameters [https://github.com/danny-1k/torch-gs]

Install

$ pip install torchgs

Example

Finding the best set of hyper-parameters and models for a classification problem

from sklearn.datasets import make_classification

import torch
import torch.nn as nn

from torch.utils.data import TensorDataset

from torchgs import GridSearch

from torchgs.metrics import Loss

X,Y = make_classification(n_samples=200, n_features=20, n_informative=10,n_classes=2,shuffle=True, random_state=42)

X = torch.Tensor(X).float()
Y = torch.Tensor(Y).long()

traindata = TensorDataset(X,Y)

net1 = nn.Sequential(
    nn.Linear(20,10),
    nn.ReLU(),
    nn.Linear(10,2)
)

net2 = nn.Sequential(
    nn.Linear(20,10),
    nn.Tanh(),
    nn.Linear(10,2)
)

net3 = nn.Sequential(
    nn.Linear(20,20),
    nn.ReLU(),
    nn.Linear(20,10),
    nn.ReLU(),
    nn.Linear(10,2)
)

net4 = nn.Sequential(
    nn.Linear(20,20),
    nn.Tanh(),
    nn.Linear(20,10),
    nn.Tanh(),
    nn.Linear(10,2)
)


search_space = {
    'trainer':
        {
            'net': [net1,net2,net3,net4],
            'optimizer': [torch.optim.Adam],
            'lossfn': [torch.nn.CrossEntropyLoss()],
            'epochs': list(range(11)),
            'metric': [Loss(torch.nn.CrossEntropyLoss())],
        },
    'train_loader': {
        'batch_size': [32,64],
    },

    'optimizer':
        {
            'lr': [1e-1,1e-2,1e-3,1e-4],
    },
}

searcher = GridSearch(search_space)
results = searcher.fit(traindata)
best = searcher.best(results,using='mean',topk=10,should_print=True)

Output

output

torchgs

  • Trainer
  • GridSearch
  • metrics
  • optimizers

torchgs.metrics

  • Metric
  • Loss
  • Accuracy
  • Recall
  • Precision
  • F1

torchgs.optimizers

  • Optimizer
  • LRscheduler

Todo

  • Parallel Training on multiple GPUS
  • Tensorboard Integration

Pull requests are welcome, let's collab 🤲.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchgs-0.0.2.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

torchgs-0.0.2-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file torchgs-0.0.2.tar.gz.

File metadata

  • Download URL: torchgs-0.0.2.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for torchgs-0.0.2.tar.gz
Algorithm Hash digest
SHA256 34301572366a53b9cdad5365cafc011ce70ad1546cc7d2edc00a622509e61802
MD5 24970830d0217a048200d3b542de9437
BLAKE2b-256 deb9735fb1cf89c7260d4622408bec72d4fa12555aaa4eb6ad4f5f467faae7d0

See more details on using hashes here.

File details

Details for the file torchgs-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: torchgs-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for torchgs-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 79554f298aed1c383b85c2f0f69a143eec6e8ed3b2d48de7469266acb6267dad
MD5 59d6a80c6d59e5bb9642b4d99e551f22
BLAKE2b-256 e0fbe9020dbfff020c91937adfcb3d6d741566987999ae5b69fd1fc4c1b9d65e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page