Custom utils for PyTorch
Project description
pytorch-custom-utils
This is a lightweight repository to help PyTorch users.
Usage
:clipboard: Dependencies
- torch 1.4.0
- torchvision 0.5.0
- python 3.6
- matplotlib 2.2.2
- numpy 1.14.3
- seaborn 0.9.0
- sklearn
- plotly
:hammer: Installation
pip install torchhkorgit clone https://github.com/Harry24k/pytorch-custom-utils
from torchhk import *
:rocket: Demos
-
RecordManager (code, markdown): RecordManager will help you to keep tracking training records.
-
Datasets (code, markdown): Dataset will help you to use torch datasets including split and label-filtering.
Supported datasets
# CIFAR10
datasets = Datasets("CIFAR10", root='./data')
# CIFAR100
datasets = Datasets("CIFAR100", root='./data')
# STL10
datasets = Datasets("STL10", root='./data')
# MNIST
datasets = Datasets("MNIST", root='./data')
# FashionMNIST
datasets = Datasets("FashionMNIST", root='./data')
# SVHN
datasets = Datasets("SVHN", root='./data')
# MNISTM
datasets = Datasets("MNISTM", root='./data')
# ImageNet
datasets = Datasets("ImageNet", root='./data')
# USPS
datasets = Datasets("USPS", root='./data')
# TinyImageNet
datasets = Datasets("TinyImageNet", root='./data')
# CIFAR with Unsupervised
datasets = Datasets("CIFAR10U", root='./data')
datasets = Datasets("CIFAR100U", root='./data')
# Corrupted CIFAR (Only test data will be corrupted)
# CORRUPTIONS = [
# 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
# 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
# 'brightness', 'contrast', 'elastic_transform', 'pixelate',
# 'jpeg_compression'
#]
datasets = Datasets("CIFAR10", root='./data',corruption='gaussian_noise')
-
Vis (code, markdown): Vis will help you to visualize torch tensors.
-
Transform (code): Transform will help you to change specific layers.
Contribution
Contribution is always welcome! Use pull requests :blush:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file torchhk-0.86.14-py3-none-any.whl.
File metadata
- Download URL: torchhk-0.86.14-py3-none-any.whl
- Upload date:
- Size: 21.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.12.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0e9d4b36b638dbee72ccb98c65b1b3c5a5378e0c008f70da2fd021404037467a
|
|
| MD5 |
3cddcf7227e27f7d73c1e21a6f7421c9
|
|
| BLAKE2b-256 |
42381cf7979f3a1ba807749699fa7930a2633524663bbc6a033c556bdf744126
|