Custom utils for PyTorch
Project description
pytorch-custom-utils
This is a lightweight repository to help PyTorch users.
Usage
:clipboard: Dependencies
- torch 1.4.0
- torchvision 0.5.0
- python 3.6
- matplotlib 2.2.2
- numpy 1.14.3
- seaborn 0.9.0
- sklearn
- plotly
:hammer: Installation
pip install torchhk
orgit clone https://github.com/Harry24k/pytorch-custom-utils
from torchhk import *
:rocket: Demos
-
RecordManager (code, markdown): RecordManager will help you to keep tracking training records.
-
Datasets (code, markdown): Dataset will help you to use torch datasets including split and label-filtering.
Supported datasets
# CIFAR10
datasets = Datasets("CIFAR10", root='./data')
# CIFAR100
datasets = Datasets("CIFAR100", root='./data')
# STL10
datasets = Datasets("STL10", root='./data')
# MNIST
datasets = Datasets("MNIST", root='./data')
# FashionMNIST
datasets = Datasets("FashionMNIST", root='./data')
# SVHN
datasets = Datasets("SVHN", root='./data')
# MNISTM
datasets = Datasets("MNISTM", root='./data')
# ImageNet
datasets = Datasets("ImageNet", root='./data')
# USPS
datasets = Datasets("USPS", root='./data')
# TinyImageNet
datasets = Datasets("TinyImageNet", root='./data')
# CIFAR with Unsupervised
datasets = Datasets("CIFAR10U", root='./data')
datasets = Datasets("CIFAR100U", root='./data')
# Corrupted CIFAR (Only test data will be corrupted)
# CORRUPTIONS = [
# 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
# 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
# 'brightness', 'contrast', 'elastic_transform', 'pixelate',
# 'jpeg_compression'
#]
datasets = Datasets("CIFAR10", root='./data',corruption='gaussian_noise')
-
Vis (code, markdown): Vis will help you to visualize torch tensors.
-
Transform (code): Transform will help you to change specific layers.
Contribution
Contribution is always welcome! Use pull requests :blush:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
torchhk-0.86.4-py3-none-any.whl
(20.7 kB
view hashes)