Skip to main content

Fast, efficient, and differentiable time-varying LPC filtering in PyTorch.

Project description

TorchLPC

torchlpc provides a PyTorch implementation of the Linear Predictive Coding (LPC) filter, also known as all-pole filter. It's fast, differentiable, and supports batched inputs with time-varying filter coefficients.

Given an input signal $\mathbf{x} \in \mathbb{R}^T$ and time-varying LPC coefficients $\mathbf{A} \in \mathbb{R}^{T \times N}$ with an order of $N$, the LPC filter is defined as:

$$ y_t = x_t - \sum_{i=1}^N A_{t,i} y_{t-i}. $$

Usage

import torch
from torchlpc import sample_wise_lpc

# Create a batch of 10 signals, each with 100 time steps
x = torch.randn(10, 100)

# Create a batch of 10 sets of LPC coefficients, each with 100 time steps and an order of 3
A = torch.randn(10, 100, 3)

# Apply LPC filtering
y = sample_wise_lpc(x, A)

# Optionally, you can provide initial values for the output signal (default is 0)
zi = torch.randn(10, 3)
y = sample_wise_lpc(x, A, zi=zi)

Installation

pip install torchlpc

or from source

pip install git+https://github.com/yoyololicon/torchlpc.git

Derivation of the gradients of the LPC filter

The details of the derivation can be found in our preprint Differentiable All-pole Filters for Time-varying Audio Systems[^1]. We show that, given the instataneous gradient $\frac{\partial \mathcal{L}}{\partial y_t}$ where $\mathcal{L}$ is the loss function, the gradients of the LPC filter with respect to the input signal $\bf x$ and the filter coefficients $\bf A$ can be expresssed also through a time-varying filter:

\frac{\partial \mathcal{L}}{\partial x_t}
= \frac{\partial \mathcal{L}}{\partial y_t}
- \sum_{i=1}^{N} A_{t+i,i} \frac{\partial \mathcal{L}}{\partial x_{t+i}}

$$ \frac{\partial \mathcal{L}}{\partial \bf A} = -\begin{vmatrix} \frac{\partial \mathcal{L}}{\partial x_1} & 0 & \dots & 0 \ 0 & \frac{\partial \mathcal{L}}{\partial x_2} & \dots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \dots & \frac{\partial \mathcal{L}}{\partial x_t} \end{vmatrix} \begin{vmatrix} y_0 & y_{-1} & \dots & y_{-N + 1} \ y_1 & y_0 & \dots & y_{-N + 2} \ \vdots & \vdots & \ddots & \vdots \ y_{T-1} & y_{T - 2} & \dots & y_{T - N} \end{vmatrix}. $$

Gradients for the initial condition $y_t|_{t \leq 0}$

The initial conditions provide an entry point at $t=1$ for filtering, as we cannot evaluate $t=-\infty$. Let us assume $A_{t, :}|_{t \leq 0} = 0$ so $y_t|_{t \leq 0} = x_t|_{t \leq 0}$, which also means $\frac{\partial \mathcal{L}}{\partial y_t}|_{t \leq 0} = \frac{\partial \mathcal{L}}{\partial x_t}|_{t \leq 0}$. Thus, the initial condition gradients are

$$ \frac{\partial \mathcal{L}}{\partial y_t} = \frac{\partial \mathcal{L}}{\partial x_t} = -\sum_{i=1-t}^{N} A_{t+i,i} \frac{\partial \mathcal{L}}{\partial x_{t+i}} \quad \text{for } -N < t \leq 0. $$

In practice, we pad $N$ and $N \times N$ zeros to the beginning of $\frac{\partial \mathcal{L}}{\partial \bf y}$ and $\mathbf{A}$ before evaluating $\frac{\partial \mathcal{L}}{\partial \bf x}$. The first $N$ outputs are the gradients to $y_t|_{t \leq 0}$ and the rest are to $x_t|_{t > 0}$.

Time-invariant filtering

In the time-invariant setting, $A_{t, i} = A_{1, i} \forall t \in [1, T]$ and the filter is simplified to

y_t = x_t - \sum_{i=1}^N a_i y_{t-i}, \mathbf{a} = A_{1,:}.

The gradients $\frac{\partial \mathcal{L}}{\partial \mathbf{x}}$ are filtering $\frac{\partial \mathcal{L}}{\partial \mathbf{y}}$ with $\mathbf{a}$ backwards in time, same as in the time-varying case. $\frac{\partial \mathcal{L}}{\partial \mathbf{a}}$ is simply doing a vector-matrix multiplication:

$$ \frac{\partial \mathcal{L}}{\partial \mathbf{a}^T} = -\frac{\partial \mathcal{L}}{\partial \mathbf{x}^T} \begin{vmatrix} y_0 & y_{-1} & \dots & y_{-N + 1} \ y_1 & y_0 & \dots & y_{-N + 2} \ \vdots & \vdots & \ddots & \vdots \ y_{T-1} & y_{T - 2} & \dots & y_{T - N} \end{vmatrix}. $$

This algorithm is more efficient than [^2] because it only needs one pass of filtering to get the two gradients while the latter needs two.

[^1]: Differentiable All-pole Filters for Time-varying Audio Systems. [^2]: Singing Voice Synthesis Using Differentiable LPC and Glottal-Flow-Inspired Wavetables.

TODO

  • Use PyTorch C++ extension for faster computation.
  • Use native CUDA kernels for GPU computation.
  • Add examples.

Citation

If you find this repository useful in your research, please cite our work with the following BibTex entry:

@misc{ycy2024diffapf,
    title={Differentiable All-pole Filters for Time-varying Audio Systems},
    author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
    year={2024},
    eprint={2404.07970},
    archivePrefix={arXiv},
    primaryClass={eess.AS}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlpc-0.4.tar.gz (8.5 kB view hashes)

Uploaded Source

Built Distribution

torchlpc-0.4-py3-none-any.whl (6.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page