Collection of functions and modules to help development in PyTorch.
Project description
torchoutil
Collection of functions and modules to help development in PyTorch.
Installation
pip install torchoutil
The main requirement is PyTorch.
To check if the package is installed and show the package version, you can use the following command in your terminal:
torchoutil-info
This library works on all Python versions >=3.8, all PyTorch versions >= 3.10, and on Linux, Mac and Windows systems.
Examples
torchoutil
functions and modules can be used like torch
ones. The default acronym for torchoutil
is to
.
Label conversions
Supports multiclass labels conversions between probabilities, classes indices, classes names and onehot encoding.
import torchoutil as to
probs = to.as_tensor([[0.9, 0.1], [0.4, 0.6]])
names = to.probs_to_name(probs, idx_to_name={0: "Cat", 1: "Dog"})
# ["Cat", "Dog"]
This package also supports multilabel labels conversions between probabilities, classes multi-indices, classes multi-names and multihot encoding.
import torchoutil as to
multihot = to.as_tensor([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
indices = to.multihot_to_indices(multihot)
# [[0], [1, 2], []]
Typing
import torchoutil as to
x1 = to.as_tensor([1, 2])
print(isinstance(x1, to.Tensor2D)) # False
x2 = to.as_tensor([[1, 2], [3, 4]])
print(isinstance(x2, to.Tensor2D)) # True
import torchoutil as to
x1 = to.as_tensor([1, 2], dtype=to.int)
print(isinstance(x1, to.SignedIntegerTensor)) # True
x2 = to.as_tensor([1, 2], dtype=to.long)
print(isinstance(x2, to.SignedIntegerTensor)) # True
x3 = to.as_tensor([1, 2], dtype=to.float)
print(isinstance(x3, to.SignedIntegerTensor)) # False
Padding
import torchoutil as to
x1 = to.rand(10, 3, 1)
x2 = to.pad_dim(x, target_length=5, dim=1, pad_value=-1)
# x2 has shape (10, 5, 1)
import torchoutil as to
tensors = [to.rand(10, 2), to.rand(5, 3), to.rand(0, 5)]
padded = to.pad_and_stack_rec(tensors, pad_value=0)
# padded has shape (10, 5)
Masking
import torchoutil as to
x = to.as_tensor([3, 1, 2])
mask = to.lengths_to_non_pad_mask(x, max_len=4)
# Each row i contains x[i] True values for non-padding mask
# tensor([[True, True, True, False],
# [True, False, False, False],
# [True, True, False, False]])
import torchoutil as to
x = to.as_tensor([1, 2, 3, 4])
mask = to.as_tensor([True, True, False, False])
result = to.masked_mean(x, mask)
# result contains the mean of the values marked as True: 1.5
Others tensors manipulations!
import torchoutil as to
x = to.as_tensor([1, 2, 3, 4])
result = to.insert_at_indices(x, indices=[0, 2], values=5)
# result contains tensor with inserted values: tensor([5, 1, 2, 5, 3, 4])
import torchoutil as to
perm = to.randperm(10)
inv_perm = to.get_inverse_perm(perm)
x1 = to.rand(10)
x2 = x1[perm]
x3 = x2[inv_perm]
# inv_perm are indices that allow us to get x3 from x2, i.e. x1 == x3 here
Pre-compute datasets to HDF files
Here is an example of pre-computing spectrograms of torchaudio SPEECHCOMMANDS
dataset, using pack_dataset
function:
from torchaudio.datasets import SPEECHCOMMANDS
from torchaudio.transforms import Spectrogram
from torchoutil import nn
from torchoutil.extras.hdf import pack_to_hdf
speech_commands_root = "path/to/speech_commands"
packed_root = "path/to/packed_dataset.hdf"
dataset = SPEECHCOMMANDS(speech_commands_root, download=True, subset="validation")
# dataset[0] is a tuple, contains waveform and other metadata
class MyTransform(nn.Module):
def __init__(self) -> None:
super().__init__()
self.spectrogram_extractor = Spectrogram()
def forward(self, item):
waveform = item[0]
spectrogram = self.spectrogram_extractor(waveform)
return (spectrogram,) + item[1:]
pack_to_hdf(dataset, packed_root, MyTransform())
Then you can load the pre-computed dataset using HDFDataset
:
from torchoutil.extras.hdf import HDFDataset
packed_root = "path/to/packed_dataset.hdf"
packed_dataset = HDFDataset(packed_root)
packed_dataset[0] # == first transformed item, i.e. transform(dataset[0])
Extras requirements
torchoutil
also provides additional modules when some specific package are already installed in your environment.
All extras can be installed with pip install torchoutil[extras]
- If
tensorboard
is installed, the functionload_event_file
can be used. It is useful to load manually all data contained in an tensorboard event file. - If
numpy
is installed, the classesNumpyToTensor
andToNumpy
can be used and their related function. It is meant to be used to compose dynamic transforms intoSequential
module. - If
h5py
is installed, the functionpack_to_hdf
and classHDFDataset
can be used. Can be used to pack/read dataset to HDF files, and supports variable-length sequences of data. - If
pyyaml
is installed, the functionsto_yaml
andload_yaml
can be used.
Contact
Maintainer:
- Étienne Labbé "Labbeti": labbeti.pub@gmail.com
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file torchoutil-0.6.0.tar.gz
.
File metadata
- Download URL: torchoutil-0.6.0.tar.gz
- Upload date:
- Size: 148.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.8.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2fd7c19cfc8afe0303b04c3d615c7329694d9b295643d127403032005c4383e5
|
|
MD5 |
e94a999446681ab09eced437d4f46e29
|
|
BLAKE2b-256 |
69e03860113f64f55739d6c1615f4aabae80011be2359a4038a9afdb6ba9c787
|