Measure neural network device specific metrics (latency, flops, etc.)
Project description
torchprof
A minimal dependency library for layer-by-layer profiling of Pytorch models.
All metrics are derived using the PyTorch autograd profiler.
Quickstart
pip install torchprof
import torch
import torchvision
import torchprof
model = torchvision.models.alexnet(pretrained=False).cuda()
x = torch.rand([1, 3, 224, 224]).cuda()
with torchprof.Profile(model, use_cuda=True) as prof:
model(x)
print(prof.display(show_events=False)) # equivalent to `print(prof)` and `print(prof.display())`
Module | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet | | | |
├── features | | | |
│├── 0 | 1.636ms | 6.466ms | 6.447ms | 1
│├── 1 | 61.320us | 92.700us | 94.016us | 1
│├── 2 | 87.680us | 177.270us | 163.744us | 1
│├── 3 | 291.539us | 1.225ms | 1.966ms | 1
│├── 4 | 34.550us | 48.850us | 50.112us | 1
│├── 5 | 63.220us | 131.670us | 121.888us | 1
│├── 6 | 202.009us | 768.135us | 846.048us | 1
│├── 7 | 40.440us | 58.130us | 59.264us | 1
│├── 8 | 183.129us | 690.816us | 854.016us | 1
│├── 9 | 35.580us | 50.360us | 51.200us | 1
│├── 10 | 167.769us | 631.019us | 701.088us | 1
│├── 11 | 34.450us | 48.730us | 50.048us | 1
│└── 12 | 64.509us | 134.508us | 123.040us | 1
├── avgpool | 67.200us | 131.190us | 122.880us | 1
└── classifier | | | |
├── 0 | 82.110us | 172.480us | 150.848us | 1
├── 1 | 470.078us | 490.848us | 815.104us | 1
├── 2 | 44.269us | 68.289us | 59.424us | 1
├── 3 | 59.339us | 125.977us | 109.568us | 1
├── 4 | 72.319us | 86.819us | 219.136us | 1
├── 5 | 34.780us | 49.340us | 49.152us | 1
└── 6 | 70.070us | 85.290us | 95.232us | 1
To see the low level operations that occur within each layer, print the contents of prof.display(show_events=True).
Module | Self CPU total | CPU total | CUDA total | Occurrences
------------------------------------|----------------|-----------|------------|------------
AlexNet | | | |
├── features | | | |
│├── 0 | | | |
││├── aten::conv2d | 16.320us | 1.636ms | 1.636ms | 1
││├── aten::convolution | 11.710us | 1.619ms | 1.620ms | 1
││├── aten::_convolution | 40.950us | 1.607ms | 1.608ms | 1
││├── aten::contiguous | 2.920us | 2.920us | 2.720us | 1
││├── aten::cudnn_convolution | 1.467ms | 1.493ms | 1.554ms | 1
││├── aten::empty | 6.160us | 6.160us | 0.000us | 1
││├── aten::resize_ | 0.490us | 0.490us | 0.000us | 1
││├── aten::stride | 2.380us | 2.380us | 0.000us | 4
││├── aten::reshape | 6.820us | 18.640us | 2.048us | 1
││├── aten::view | 11.820us | 11.820us | 0.000us | 1
││└── aten::add_ | 51.060us | 51.060us | 18.432us | 1
│├── 1 | | | |
││├── aten::relu_ | 29.940us | 61.320us | 61.408us | 1
││└── aten::threshold_ | 31.380us | 31.380us | 32.608us | 1
│├── 2 | | | |
││├── aten::max_pool2d | 14.680us | 87.680us | 86.016us | 1
...
The original Pytorch EventList can be returned by calling raw() on the profile instance.
trace, event_lists_dict = prof.raw()
print(trace[2])
# Trace(path=('AlexNet', 'features', '0'), leaf=True, module=Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)))
print(event_lists_dict[trace[2].path][0])
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
aten::conv2d 1.00% 16.320us 100.00% 1.636ms 1.636ms 16.032us 0.98% 1.636ms 1.636ms 1
aten::convolution 0.72% 11.710us 99.00% 1.619ms 1.619ms 12.064us 0.74% 1.620ms 1.620ms 1
aten::_convolution 2.50% 40.950us 98.29% 1.607ms 1.607ms 29.088us 1.78% 1.608ms 1.608ms 1
aten::contiguous 0.25% 4.090us 0.25% 4.090us 4.090us 4.032us 0.25% 4.032us 4.032us 1
aten::cudnn_convolution 89.71% 1.467ms 91.27% 1.493ms 1.493ms 1.548ms 94.64% 1.554ms 1.554ms 1
aten::empty 0.28% 4.590us 0.28% 4.590us 4.590us 0.000us 0.00% 0.000us 0.000us 1
aten::contiguous 0.22% 3.530us 0.22% 3.530us 3.530us 3.200us 0.20% 3.200us 3.200us 1
aten::resize_ 0.33% 5.390us 0.33% 5.390us 5.390us 0.000us 0.00% 0.000us 0.000us 1
aten::contiguous 0.18% 2.920us 0.18% 2.920us 2.920us 2.720us 0.17% 2.720us 2.720us 1
aten::resize_ 0.03% 0.490us 0.03% 0.490us 0.490us 0.000us 0.00% 0.000us 0.000us 1
aten::stride 0.09% 1.460us 0.09% 1.460us 1.460us 0.000us 0.00% 0.000us 0.000us 1
aten::stride 0.02% 0.320us 0.02% 0.320us 0.320us 0.000us 0.00% 0.000us 0.000us 1
aten::stride 0.02% 0.300us 0.02% 0.300us 0.300us 0.000us 0.00% 0.000us 0.000us 1
aten::stride 0.02% 0.300us 0.02% 0.300us 0.300us 0.000us 0.00% 0.000us 0.000us 1
aten::empty 0.38% 6.160us 0.38% 6.160us 6.160us 0.000us 0.00% 0.000us 0.000us 1
aten::reshape 0.42% 6.820us 1.14% 18.640us 18.640us 2.048us 0.13% 2.048us 2.048us 1
aten::view 0.72% 11.820us 0.72% 11.820us 11.820us 0.000us 0.00% 0.000us 0.000us 1
aten::add_ 3.12% 51.060us 3.12% 51.060us 51.060us 18.432us 1.13% 18.432us 18.432us 1
--------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Self CPU time total: 1.636ms
CUDA time total: 1.636ms
Layers can be selected for individually using the optional paths kwarg. Profiling is ignored for all other layers.
model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])
# Layer does not have to be a leaf layer
paths = [("AlexNet", "features", "3"), ("AlexNet", "classifier")]
with torchprof.Profile(model, paths=paths) as prof:
model(x)
print(prof)
Module | Self CPU total | CPU total | CUDA total | Occurrences
---------------|----------------|-----------|------------|------------
AlexNet | | | |
├── features | | | |
│├── 0 | | | |
│├── 1 | | | |
│├── 2 | | | |
│├── 3 | 2.908ms | 11.604ms | 0.000us | 1
│├── 4 | | | |
│├── 5 | | | |
│├── 6 | | | |
│├── 7 | | | |
│├── 8 | | | |
│├── 9 | | | |
│├── 10 | | | |
│├── 11 | | | |
│└── 12 | | | |
├── avgpool | | | |
└── classifier | 12.311ms | 13.077ms | 0.000us | 1
├── 0 | | | |
├── 1 | | | |
├── 2 | | | |
├── 3 | | | |
├── 4 | | | |
├── 5 | | | |
└── 6 | | | |
Citation
If this software is useful to your research, I would greatly appreciate a citation in your work.
@misc{torchprof,
author = {Alexander William Wong},
title = {torchprof},
howpublished = {github.com},
month = 4,
year = 2020,
note = {A minimal dependency library for layer-by-layer profiling of Pytorch models.}
}
LICENSE
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file torchprof-1.2.0.tar.gz.
File metadata
- Download URL: torchprof-1.2.0.tar.gz
- Upload date:
- Size: 10.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f7495ee352ff6b66222bb12732e7bae1d28b9a23c56eae0c37c3d9c9a1efffa8
|
|
| MD5 |
f4fecdad7dfcfc12ea32686216ac2d35
|
|
| BLAKE2b-256 |
ab88825d20c88618c699cd4d6551812dd7bc3b664a6d37ce825574300f67b706
|
File details
Details for the file torchprof-1.2.0-py3-none-any.whl.
File metadata
- Download URL: torchprof-1.2.0-py3-none-any.whl
- Upload date:
- Size: 9.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
eca3fed5ee807a401d4d369858b783ec1aa09d2294a474f0c3369ef501f865c8
|
|
| MD5 |
b23929a188d454b4b3fd20daa7b283c5
|
|
| BLAKE2b-256 |
0342b27682473290b439ef7185d8eff934ee967447231a7c4b5dce76fe4e471e
|