Skip to main content

Implementation of Piecewise Linear Functions (PWL) in PyTorch.

Project description

Piecewise Linear Functions (PWLs) can be used to approximate any 1D function. PWLs are built with a configurable number of line segments - the more segments the more accurate the approximation. This package implements PWLs in PyTorch and as such they can be fit to the data using standard gradient descent. For example:

import torchpwl

# Create a PWL consisting of 3 segments for 5 features - each feature will have its own PWL function. pwl = torchpwl.PWL(num_features=5, num_breakpoints=3) x = torch.Tensor(11, 5).normal_() y = pwl(x)

Monotonicity is also supported via MonoPWL. See the class documentations for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchpwl-0.1.2.tar.gz (6.9 kB view hashes)

Uploaded source

Built Distribution

torchpwl-0.1.2-py2-none-any.whl (7.8 kB view hashes)

Uploaded py2

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page