Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

It provides pytorch and python-first, low and high level abstractions for RL that are intended to be efficient, modular, documented and properly tested. The code is aimed at supporting research in RL. Most of it is written in python in a highly modular way, such that researchers can easily swap components, transform them or write new ones with little effort.

This repo attempts to align with the existing pytorch ecosystem libraries in that it has a dataset pillar (torchrl/envs), transforms, models, data utilities (e.g. collectors and containers), etc. TorchRL aims at having as few dependencies as possible (python standard library, numpy and pytorch). Common environment libraries (e.g. OpenAI gym) are only optional.

On the low-level end, torchrl comes with a set of highly re-usable functionals for cost functions, returns and data processing.

TorchRL aims at (1) a high modularity and (2) good runtime performance. Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
    LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1")
model = TensorDictModule(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 2),
        NormalParamExtractor()
    ),
    in_keys=["observation"],
    out_keys=["loc", "scale"]
)
critic = ValueOperator(
    nn.Sequential(
        nn.Linear(3, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 128), nn.Tanh(),
        nn.Linear(128, 1),
    ),
    in_keys=["observation"],
)
actor = ProbabilisticActor(
    model,
    in_keys=["loc", "scale"],
    distribution_class=TanhNormal,
    distribution_kwargs={"min": -1.0, "max": 1.0},
    return_log_prob=True
    )
buffer = TensorDictReplayBuffer(
    LazyTensorStorage(1000),
    SamplerWithoutReplacement()
    )
collector = SyncDataCollector(
    env,
    actor,
    frames_per_batch=1000,
    total_frames=1_000_000
    )
loss_fn = ClipPPOLoss(actor, critic, gamma=0.99)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)
adv_fn = GAE(value_network=critic, gamma=0.99, lmbda=0.95, average_gae=True)
for data in collector:  # collect data
    for epoch in range(10):
        adv_fn(data)  # compute advantage
        buffer.extend(data.view(-1))
        for i in range(20):  # consume data
            sample = buffer.sample(50)  # mini-batch
            loss_vals = loss_fn(sample)
            loss_val = sum(
                value for key, value in loss_vals.items() if
                key.startswith("loss")
                )
            loss_val.backward()
            optim.step()
            optim.zero_grad()
    print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.MODE):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples markdown directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip install ninja -U
python setup.py develop

(unfortunately, pip install -e . will not work).

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.2.16-cp311-cp311-win_amd64.whl (838.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.2.16-cp311-cp311-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

torchrl_nightly-2024.2.16-cp310-cp310-win_amd64.whl (840.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.2.16-cp310-cp310-macosx_10_15_x86_64.whl (880.5 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

torchrl_nightly-2024.2.16-cp39-cp39-win_amd64.whl (837.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.2.16-cp39-cp39-macosx_11_0_x86_64.whl (880.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

torchrl_nightly-2024.2.16-cp38-cp38-win_amd64.whl (840.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

torchrl_nightly-2024.2.16-cp38-cp38-macosx_11_0_x86_64.whl (880.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file torchrl_nightly-2024.2.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a2358f65a44c0f6b2b1fbbc0dac7514e95919e95800e7239feb6ed24204582e8
MD5 b74b0785e5586962ea2da14d8f7f5bea
BLAKE2b-256 a667ea7b6850301b16720632246f41eb9880d85b8bc438feb25471296962fe6d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e27a86ed435b8833820fa1e4a559d4fcd8f689fb8f5d3216f5b99c5f18c91e54
MD5 36b7cc89e1f2f9a2a186e753caa48841
BLAKE2b-256 4b33823842450f72e98d9a4594367910c7797643291faae712e5bb1f0a5b168b

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 95134769ba07ec1375de386f2fa996768fbc284f374ad0937804d223ad913b89
MD5 6bcef5327be9e608fab0ecfa58ada357
BLAKE2b-256 1ebc7310953d4cf3cf6c849b56914ddda74e1479be5ef8fd1afa8b5d14f6f154

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9dc99ebc2d6b474bd7e2f581acd7487547629d82deaead2d25fb87067a6aa167
MD5 08bd374392e78d6dbeb962248948c55b
BLAKE2b-256 8780055640716da408e0fb1962fe5ee675411045498ce630dbc583813f431671

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ef36754dd345f6d184f708a69ed87e8ae919d07319d20f12cce2aabd862d15e
MD5 1c0ad79d6c7315ed246a5ffbf42dd77e
BLAKE2b-256 6e53d65a4a31af03c610f0eff9c93c10ff93b5b84e513c241f9740d62a6b6028

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 df8c1d276f715745566d31c3b58420bce6f9e325bbb04048000bebafc6471842
MD5 4cff9a1aa81bcc6937747a29591f5f5a
BLAKE2b-256 6124484981182d1a44b842cbeb15b1f9f2cdf2effb7f123b74d3b5b2f923d992

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c714f89a03efe2fa906dd4ad9a9bede5671b2acc3ad3d11d5e7c3377db4de75
MD5 ccb44f0e6fc7816e1cf7acce54e9bdc4
BLAKE2b-256 69f82c36c78b5b96e4f149c4f126882209373b727b8e0635de978c24092e4eee

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 93d7770f2306ea20cf032264a010ebb5a211f68e4a91a4d816915ad7a35a263b
MD5 5e0900e317832c12b07fdd5b50037af9
BLAKE2b-256 c9d14a4196f1558de297675926729c39edb4a2dcaabde85ae8a4cef9b7a9a356

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8f4b95dbbfbb7c62e0ecb0c5dfa7ab863447879843a060245270ac49d5522abf
MD5 0d946bf0e74627dc6af4adadbdd56595
BLAKE2b-256 fbc664c0ff151fe60fc42bdaa6e476887f2cebd3fe82a958860307c0f636b82d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6ac7080b20d67ae3b1ee043a4af70de768f0bb941979b67bf4e4540875206216
MD5 5a9065546dff449e602e29d1f2019c1c
BLAKE2b-256 f2e0f86c85135c727fd578cc086a48cc0860970528fe920303efb6b414db3ca8

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 226f5fda9373fbb9dbe7662973ad2727029c761ba384ef2833553a151139ddde
MD5 672f0a14a9aa1d465e9f124b08236187
BLAKE2b-256 e4b6a1863358f72382013256ed148bb7c5e1e5f82ded26028da72a6607f45669

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.2.16-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.2.16-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 46063fc93ef0a7c215cf557435b5773aa78cbe083e6696e0f41d93c5f87851fd
MD5 82fa8d276dd68b09956587d65f7a636a
BLAKE2b-256 3bb7152d6f82a4e14f8a0f5df8d46fea8b7d44ef2a9dd8f32c701bb33f40d635

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page