Skip to main content

No project description provided

Project description

Unit-tests Documentation Benchmarks codecov Twitter Follow Python version GitHub license pypi version pypi nightly version Downloads Downloads Discord Shield

TorchRL

Documentation | TensorDict | Features | Examples, tutorials and demos | Citation | Installation | Asking a question | Contributing

TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch.

Key features

  • 🐍 Python-first: Designed with Python as the primary language for ease of use and flexibility
  • ⏱️ Efficient: Optimized for performance to support demanding RL research applications
  • 🧮 Modular, customizable, extensible: Highly modular architecture allows for easy swapping, transformation, or creation of new components
  • 📚 Documented: Thorough documentation ensures that users can quickly understand and utilize the library
  • Tested: Rigorously tested to ensure reliability and stability
  • ⚙️ Reusable functionals: Provides a set of highly reusable functions for cost functions, returns, and data processing

Design Principles

  • 🔥 Aligns with PyTorch ecosystem: Follows the structure and conventions of popular PyTorch libraries (e.g., dataset pillar, transforms, models, data utilities)
  • ➖ Minimal dependencies: Only requires Python standard library, NumPy, and PyTorch; optional dependencies for common environment libraries (e.g., OpenAI Gym) and datasets (D4RL, OpenX...)

Read the full paper for a more curated description of the library.

Getting started

Check our Getting Started tutorials for quickly ramp up with the basic features of the library!

Documentation and knowledge base

The TorchRL documentation can be found here. It contains tutorials and the API reference.

TorchRL also provides a RL knowledge base to help you debug your code, or simply learn the basics of RL. Check it out here.

We have some introductory videos for you to get to know the library better, check them out:

Spotlight publications

TorchRL being domain-agnostic, you can use it across many different fields. Here are a few examples:

  • ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
  • BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
  • BricksRL: A Platform for Democratizing Robotics and Reinforcement Learning Research and Education with LEGO
  • OmniDrones: An Efficient and Flexible Platform for Reinforcement Learning in Drone Control
  • RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
  • Robohive: A unified framework for robot learning

Writing simplified and portable RL codebase with TensorDict

RL algorithms are very heterogeneous, and it can be hard to recycle a codebase across settings (e.g. from online to offline, from state-based to pixel-based learning). TorchRL solves this problem through TensorDict, a convenient data structure(1) that can be used to streamline one's RL codebase. With this tool, one can write a complete PPO training script in less than 100 lines of code!

Code
import torch
from tensordict.nn import TensorDictModule
from tensordict.nn.distributions import NormalParamExtractor
from torch import nn

from torchrl.collectors import SyncDataCollector
from torchrl.data.replay_buffers import TensorDictReplayBuffer, \
  LazyTensorStorage, SamplerWithoutReplacement
from torchrl.envs.libs.gym import GymEnv
from torchrl.modules import ProbabilisticActor, ValueOperator, TanhNormal
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE

env = GymEnv("Pendulum-v1") 
model = TensorDictModule(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 2),
      NormalParamExtractor()
  ),
  in_keys=["observation"],
  out_keys=["loc", "scale"]
)
critic = ValueOperator(
  nn.Sequential(
      nn.Linear(3, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 128), nn.Tanh(),
      nn.Linear(128, 1),
  ),
  in_keys=["observation"],
)
actor = ProbabilisticActor(
  model,
  in_keys=["loc", "scale"],
  distribution_class=TanhNormal,
  distribution_kwargs={"low": -1.0, "high": 1.0},
  return_log_prob=True
  )
buffer = TensorDictReplayBuffer(
  storage=LazyTensorStorage(1000),
  sampler=SamplerWithoutReplacement(),
  batch_size=50,
  )
collector = SyncDataCollector(
  env,
  actor,
  frames_per_batch=1000,
  total_frames=1_000_000,
)
loss_fn = ClipPPOLoss(actor, critic)
adv_fn = GAE(value_network=critic, average_gae=True, gamma=0.99, lmbda=0.95)
optim = torch.optim.Adam(loss_fn.parameters(), lr=2e-4)

for data in collector:  # collect data
  for epoch in range(10):
      adv_fn(data)  # compute advantage
      buffer.extend(data)
      for sample in buffer:  # consume data
          loss_vals = loss_fn(sample)
          loss_val = sum(
              value for key, value in loss_vals.items() if
              key.startswith("loss")
              )
          loss_val.backward()
          optim.step()
          optim.zero_grad()
  print(f"avg reward: {data['next', 'reward'].mean().item(): 4.4f}")

Here is an example of how the environment API relies on tensordict to carry data from one function to another during a rollout execution: Alt Text

TensorDict makes it easy to re-use pieces of code across environments, models and algorithms.

Code

For instance, here's how to code a rollout in TorchRL:

- obs, done = env.reset()
+ tensordict = env.reset()
policy = SafeModule(
    model,
    in_keys=["observation_pixels", "observation_vector"],
    out_keys=["action"],
)
out = []
for i in range(n_steps):
-     action, log_prob = policy(obs)
-     next_obs, reward, done, info = env.step(action)
-     out.append((obs, next_obs, action, log_prob, reward, done))
-     obs = next_obs
+     tensordict = policy(tensordict)
+     tensordict = env.step(tensordict)
+     out.append(tensordict)
+     tensordict = step_mdp(tensordict)  # renames next_observation_* keys to observation_*
- obs, next_obs, action, log_prob, reward, done = [torch.stack(vals, 0) for vals in zip(*out)]
+ out = torch.stack(out, 0)  # TensorDict supports multiple tensor operations

Using this, TorchRL abstracts away the input / output signatures of the modules, env, collectors, replay buffers and losses of the library, allowing all primitives to be easily recycled across settings.

Code

Here's another example of an off-policy training loop in TorchRL (assuming that a data collector, a replay buffer, a loss and an optimizer have been instantiated):

- for i, (obs, next_obs, action, hidden_state, reward, done) in enumerate(collector):
+ for i, tensordict in enumerate(collector):
-     replay_buffer.add((obs, next_obs, action, log_prob, reward, done))
+     replay_buffer.add(tensordict)
    for j in range(num_optim_steps):
-         obs, next_obs, action, hidden_state, reward, done = replay_buffer.sample(batch_size)
-         loss = loss_fn(obs, next_obs, action, hidden_state, reward, done)
+         tensordict = replay_buffer.sample(batch_size)
+         loss = loss_fn(tensordict)
        loss.backward()
        optim.step()
        optim.zero_grad()

This training loop can be re-used across algorithms as it makes a minimal number of assumptions about the structure of the data.

TensorDict supports multiple tensor operations on its device and shape (the shape of TensorDict, or its batch size, is the common arbitrary N first dimensions of all its contained tensors):

Code
# stack and cat
tensordict = torch.stack(list_of_tensordicts, 0)
tensordict = torch.cat(list_of_tensordicts, 0)
# reshape
tensordict = tensordict.view(-1)
tensordict = tensordict.permute(0, 2, 1)
tensordict = tensordict.unsqueeze(-1)
tensordict = tensordict.squeeze(-1)
# indexing
tensordict = tensordict[:2]
tensordict[:, 2] = sub_tensordict
# device and memory location
tensordict.cuda()
tensordict.to("cuda:1")
tensordict.share_memory_()

TensorDict comes with a dedicated tensordict.nn module that contains everything you might need to write your model with it. And it is functorch and torch.compile compatible!

Code
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
+ td_module = SafeModule(transformer_model, in_keys=["src", "tgt"], out_keys=["out"])
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
+ tensordict = TensorDict({"src": src, "tgt": tgt}, batch_size=[20, 32])
- out = transformer_model(src, tgt)
+ td_module(tensordict)
+ out = tensordict["out"]

The TensorDictSequential class allows to branch sequences of nn.Module instances in a highly modular way. For instance, here is an implementation of a transformer using the encoder and decoder blocks:

encoder_module = TransformerEncoder(...)
encoder = TensorDictSequential(encoder_module, in_keys=["src", "src_mask"], out_keys=["memory"])
decoder_module = TransformerDecoder(...)
decoder = TensorDictModule(decoder_module, in_keys=["tgt", "memory"], out_keys=["output"])
transformer = TensorDictSequential(encoder, decoder)
assert transformer.in_keys == ["src", "src_mask", "tgt"]
assert transformer.out_keys == ["memory", "output"]

TensorDictSequential allows to isolate subgraphs by querying a set of desired input / output keys:

transformer.select_subsequence(out_keys=["memory"])  # returns the encoder
transformer.select_subsequence(in_keys=["tgt", "memory"])  # returns the decoder

Check TensorDict tutorials to learn more!

Features

  • A common interface for environments which supports common libraries (OpenAI gym, deepmind control lab, etc.)(1) and state-less execution (e.g. Model-based environments). The batched environments containers allow parallel execution(2). A common PyTorch-first class of tensor-specification class is also provided. TorchRL's environments API is simple but stringent and specific. Check the documentation and tutorial to learn more!

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_parallel = ParallelEnv(4, env_make)  # creates 4 envs in parallel
    tensordict = env_parallel.rollout(max_steps=20, policy=None)  # random rollout (no policy given)
    assert tensordict.shape == [4, 20]  # 4 envs, 20 steps rollout
    env_parallel.action_spec.is_in(tensordict["action"])  # spec check returns True
    
  • multiprocess and distributed data collectors(2) that work synchronously or asynchronously. Through the use of TensorDict, TorchRL's training loops are made very similar to regular training loops in supervised learning (although the "dataloader" -- read data collector -- is modified on-the-fly):

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    collector = MultiaSyncDataCollector(
        [env_make, env_make],
        policy=policy,
        devices=["cuda:0", "cuda:0"],
        total_frames=10000,
        frames_per_batch=50,
        ...
    )
    for i, tensordict_data in enumerate(collector):
        loss = loss_module(tensordict_data)
        loss.backward()
        optim.step()
        optim.zero_grad()
        collector.update_policy_weights_()
    

    Check our distributed collector examples to learn more about ultra-fast data collection with TorchRL.

  • efficient(2) and generic(1) replay buffers with modularized storage:

    Code
    storage = LazyMemmapStorage(  # memory-mapped (physical) storage
        cfg.buffer_size,
        scratch_dir="/tmp/"
    )
    buffer = TensorDictPrioritizedReplayBuffer(
        alpha=0.7,
        beta=0.5,
        collate_fn=lambda x: x,
        pin_memory=device != torch.device("cpu"),
        prefetch=10,  # multi-threaded sampling
        storage=storage
    )
    

    Replay buffers are also offered as wrappers around common datasets for offline RL:

    Code
    from torchrl.data.replay_buffers import SamplerWithoutReplacement
    from torchrl.data.datasets.d4rl import D4RLExperienceReplay
    data = D4RLExperienceReplay(
        "maze2d-open-v0",
        split_trajs=True,
        batch_size=128,
        sampler=SamplerWithoutReplacement(drop_last=True),
    )
    for sample in data:  # or alternatively sample = data.sample()
        fun(sample)
    
  • cross-library environment transforms(1), executed on device and in a vectorized fashion(2), which process and prepare the data coming out of the environments to be used by the agent:

    Code
    env_make = lambda: GymEnv("Pendulum-v1", from_pixels=True)
    env_base = ParallelEnv(4, env_make, device="cuda:0")  # creates 4 envs in parallel
    env = TransformedEnv(
        env_base,
        Compose(
            ToTensorImage(),
            ObservationNorm(loc=0.5, scale=1.0)),  # executes the transforms once and on device
    )
    tensordict = env.reset()
    assert tensordict.device == torch.device("cuda:0")
    

    Other transforms include: reward scaling (RewardScaling), shape operations (concatenation of tensors, unsqueezing etc.), concatenation of successive operations (CatFrames), resizing (Resize) and many more.

    Unlike other libraries, the transforms are stacked as a list (and not wrapped in each other), which makes it easy to add and remove them at will:

    env.insert_transform(0, NoopResetEnv())  # inserts the NoopResetEnv transform at the index 0
    

    Nevertheless, transforms can access and execute operations on the parent environment:

    transform = env.transform[1]  # gathers the second transform of the list
    parent_env = transform.parent  # returns the base environment of the second transform, i.e. the base env + the first transform
    
  • various tools for distributed learning (e.g. memory mapped tensors)(2);

  • various architectures and models (e.g. actor-critic)(1):

    Code
    # create an nn.Module
    common_module = ConvNet(
        bias_last_layer=True,
        depth=None,
        num_cells=[32, 64, 64],
        kernel_sizes=[8, 4, 3],
        strides=[4, 2, 1],
    )
    # Wrap it in a SafeModule, indicating what key to read in and where to
    # write out the output
    common_module = SafeModule(
        common_module,
        in_keys=["pixels"],
        out_keys=["hidden"],
    )
    # Wrap the policy module in NormalParamsWrapper, such that the output
    # tensor is split in loc and scale, and scale is mapped onto a positive space
    policy_module = SafeModule(
        NormalParamsWrapper(
            MLP(num_cells=[64, 64], out_features=32, activation=nn.ELU)
        ),
        in_keys=["hidden"],
        out_keys=["loc", "scale"],
    )
    # Use a SafeProbabilisticTensorDictSequential to combine the SafeModule with a
    # SafeProbabilisticModule, indicating how to build the
    # torch.distribution.Distribution object and what to do with it
    policy_module = SafeProbabilisticTensorDictSequential(  # stochastic policy
        policy_module,
        SafeProbabilisticModule(
            in_keys=["loc", "scale"],
            out_keys="action",
            distribution_class=TanhNormal,
        ),
    )
    value_module = MLP(
        num_cells=[64, 64],
        out_features=1,
        activation=nn.ELU,
    )
    # Wrap the policy and value funciton in a common module
    actor_value = ActorValueOperator(common_module, policy_module, value_module)
    # standalone policy from this
    standalone_policy = actor_value.get_policy_operator()
    
  • exploration wrappers and modules to easily swap between exploration and exploitation(1):

    Code
    policy_explore = EGreedyWrapper(policy)
    with set_exploration_type(ExplorationType.RANDOM):
        tensordict = policy_explore(tensordict)  # will use eps-greedy
    with set_exploration_type(ExplorationType.DETERMINISTIC):
        tensordict = policy_explore(tensordict)  # will not use eps-greedy
    
  • A series of efficient loss modules and highly vectorized functional return and advantage computation.

    Code

    Loss modules

    from torchrl.objectives import DQNLoss
    loss_module = DQNLoss(value_network=value_network, gamma=0.99)
    tensordict = replay_buffer.sample(batch_size)
    loss = loss_module(tensordict)
    

    Advantage computation

    from torchrl.objectives.value.functional import vec_td_lambda_return_estimate
    advantage = vec_td_lambda_return_estimate(gamma, lmbda, next_state_value, reward, done, terminated)
    
  • a generic trainer class(1) that executes the aforementioned training loop. Through a hooking mechanism, it also supports any logging or data transformation operation at any given time.

  • various recipes to build models that correspond to the environment being deployed.

If you feel a feature is missing from the library, please submit an issue! If you would like to contribute to new features, check our call for contributions and our contribution page.

Examples, tutorials and demos

A series of examples are provided with an illustrative purpose:

and many more to come!

Check the examples directory for more details about handling the various configuration settings.

We also provide tutorials and demos that give a sense of what the library can do.

Citation

If you're using TorchRL, please refer to this BibTeX entry to cite this work:

@misc{bou2023torchrl,
      title={TorchRL: A data-driven decision-making library for PyTorch}, 
      author={Albert Bou and Matteo Bettini and Sebastian Dittert and Vikash Kumar and Shagun Sodhani and Xiaomeng Yang and Gianni De Fabritiis and Vincent Moens},
      year={2023},
      eprint={2306.00577},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Installation

Create a conda environment where the packages will be installed.

conda create --name torch_rl python=3.9
conda activate torch_rl

PyTorch

Depending on the use of functorch that you want to make, you may want to install the latest (nightly) PyTorch release or the latest stable version of PyTorch. See here for a detailed list of commands, including pip3 or other special installation instructions.

Torchrl

You can install the latest stable release by using

pip3 install torchrl

This should work on linux, Windows 10 and OsX (Intel or Silicon chips). On certain Windows machines (Windows 11), one should install the library locally (see below).

The nightly build can be installed via

pip3 install torchrl-nightly

which we currently only ship for Linux and OsX (Intel) machines. Importantly, the nightly builds require the nightly builds of PyTorch too.

To install extra dependencies, call

pip3 install "torchrl[atari,dm_control,gym_continuous,rendering,tests,utils,marl,checkpointing]"

or a subset of these.

One may also desire to install the library locally. Three main reasons can motivate this:

  • the nightly/stable release isn't available for one's platform (eg, Windows 11, nightlies for Apple Silicon etc.);
  • contributing to the code;
  • install torchrl with a previous version of PyTorch (any version >= 2.0) (note that this should also be doable via a regular install followed by a downgrade to a previous pytorch version -- but the C++ binaries will not be available so some feature will not work,
    such as prioritized replay buffers and the like.)

To install the library locally, start by cloning the repo:

git clone https://github.com/pytorch/rl

and don't forget to check out the branch or tag you want to use for the build:

git checkout v0.4.0

Go to the directory where you have cloned the torchrl repo and install it (after installing ninja)

cd /path/to/torchrl/
pip3 install ninja -U
python setup.py develop

One can also build the wheels to distribute to co-workers using

python setup.py bdist_wheel

Your wheels will be stored there ./dist/torchrl<name>.whl and installable via

pip install torchrl<name>.whl

Warning: Unfortunately, pip3 install -e . does not currently work. Contributions to help fix this are welcome!

On M1 machines, this should work out-of-the-box with the nightly build of PyTorch. If the generation of this artifact in MacOs M1 doesn't work correctly or in the execution the message (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e')) appears, then try

ARCHFLAGS="-arch arm64" python setup.py develop

To run a quick sanity check, leave that directory (e.g. by executing cd ~/) and try to import the library.

python -c "import torchrl"

This should not return any warning or error.

Optional dependencies

The following libraries can be installed depending on the usage one wants to make of torchrl:

# diverse
pip3 install tqdm tensorboard "hydra-core>=1.1" hydra-submitit-launcher

# rendering
pip3 install moviepy

# deepmind control suite
pip3 install dm_control

# gym, atari games
pip3 install "gym[atari]" "gym[accept-rom-license]" pygame

# tests
pip3 install pytest pyyaml pytest-instafail

# tensorboard
pip3 install tensorboard

# wandb
pip3 install wandb

Troubleshooting

If a ModuleNotFoundError: No module named ‘torchrl._torchrl errors occurs (or a warning indicating that the C++ binaries could not be loaded), it means that the C++ extensions were not installed or not found.

  • One common reason might be that you are trying to import torchrl from within the git repo location. The following code snippet should return an error if torchrl has not been installed in develop mode:
    cd ~/path/to/rl/repo
    python -c 'from torchrl.envs.libs.gym import GymEnv'
    
    If this is the case, consider executing torchrl from another location.
  • If you're not importing torchrl from within its repo location, it could be caused by a problem during the local installation. Check the log after the python setup.py develop. One common cause is a g++/C++ version discrepancy and/or a problem with the ninja library.
  • If the problem persists, feel free to open an issue on the topic in the repo, we'll make our best to help!
  • On MacOs, we recommend installing XCode first. With Apple Silicon M1 chips, make sure you are using the arm64-built python (e.g. here). Running the following lines of code
    wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py
    python collect_env.py
    
    should display
    OS: macOS *** (arm64)
    
    and not
    OS: macOS **** (x86_64)
    

Versioning issues can cause error message of the type undefined symbol and such. For these, refer to the versioning issues document for a complete explanation and proposed workarounds.

Asking a question

If you spot a bug in the library, please raise an issue in this repo.

If you have a more generic question regarding RL in PyTorch, post it on the PyTorch forum.

Contributing

Internal collaborations to torchrl are welcome! Feel free to fork, submit issues and PRs. You can checkout the detailed contribution guide here. As mentioned above, a list of open contributions can be found in here.

Contributors are recommended to install pre-commit hooks (using pre-commit install). pre-commit will check for linting related issues when the code is committed locally. You can disable th check by appending -n to your commit command: git commit -m <commit message> -n

Disclaimer

This library is released as a PyTorch beta feature. BC-breaking changes are likely to happen but they will be introduced with a deprecation warranty after a few release cycles.

License

TorchRL is licensed under the MIT License. See LICENSE for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchrl_nightly-2024.8.14-cp312-cp312-win_amd64.whl (975.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

torchrl_nightly-2024.8.14-cp311-cp311-win_amd64.whl (975.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

torchrl_nightly-2024.8.14-cp310-cp310-win_amd64.whl (977.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

torchrl_nightly-2024.8.14-cp39-cp39-win_amd64.whl (974.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

torchrl_nightly-2024.8.14-cp38-cp38-win_amd64.whl (976.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file torchrl_nightly-2024.8.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f6c7c0fa1ca62f5ed278cb1c2c6c25306cd3b7aaa6f642f413b9f6f8ad11e210
MD5 6ee15a096209f85dfc29e1fc1e0cb37d
BLAKE2b-256 6748a1ab80934cedc9c40daa00c4d8149ba1b07e8a9185854204b56e1cb5cc08

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da338d9accd57c58181a3ed00e8f3e705068c93124f65220a7002c5840773dde
MD5 9839759ea1cb23709644d150f9f9fe55
BLAKE2b-256 f379766268ab4a8912fa470510c2453d07638b19d2d60f730e46d3073a24a242

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3990d6837854bda45af68913864bcd72077c62cb3b2177bac6896b0d7be0d0e4
MD5 54997bd705031557c8788c1ea7bd2252
BLAKE2b-256 fe030aea655d3ec0f49c67d6378aacec7bb1264130e0be2f079ab97a594ebf4d

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 188f3a8351c16ff431aa495d161d1927cff4f8d882c589eae87ba49edebfc07c
MD5 11258b4803d49b49932fadc93689fb4d
BLAKE2b-256 508953ca7c0090ecdf18fc22fe81df2c30ea4fe4d5e7793f54349dad86653382

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f989101c3493b5bd03fa592e27065ebc74c14bad7f11c149daed8fed15ec1cb3
MD5 96a197d7d757a61977510bdfb228cc9b
BLAKE2b-256 9eca7053b05d9cf53049d007ebd30ed598eb8a71ee885c23123dea0c49e05e87

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 518087c48d539bc9367279a7555c21289e0e6acfd1d55c36c426c29de09c0b79
MD5 1b39b2ab2bd1acdcf8f4f5cb5cc57e79
BLAKE2b-256 c41d6e2c71da9e684b0b8a4e3c6ecd9afc5fb18c0bc679c2fc1b6ff9a647bcd4

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 630a32954f594637a933169410468e169e095116cf31d65141452bf1d7341ab0
MD5 c4188f646468fad04103cce3bc64b3d8
BLAKE2b-256 a8f454dc2fffafecec83033b088b753066b537a041b9065e253178bf0db7bd5b

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4800b5067d9119523d25b895817ef9326a989cb8f52bcec214ccb1c4d7055008
MD5 1548c18e8c5cb7c5635586b7f681637b
BLAKE2b-256 feffac89fdc057d2a6e9ed90c1e03f68df41b3aa6b95e8f24f2ad470af775e44

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d28bd29f9b18ec9b59408165de2359fc1126521a662545fdd481d956567ebce4
MD5 253b1433bee1a3ff674f38e7b338c16f
BLAKE2b-256 7f53f9112e4b33e05cd235a1d112137de5993d4e7f329c47369772395907ca2e

See more details on using hashes here.

File details

Details for the file torchrl_nightly-2024.8.14-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchrl_nightly-2024.8.14-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 758867eac1581db2a8d451e58fac5e2c6bb2127bec4dba22609bee15a2ece52a
MD5 73ecfa4b3d4fff77f68b7d93998e703b
BLAKE2b-256 f40b400862f94f7ed5e06ae7186f0a71c603ca5733cdcb4ff4730257358e6b38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page