Skip to main content

Useful information about your Pytorch module

Project description

Torchscan: meaningful module insights

License Codacy Badge Build Status codecov Docs

The very useful summary method of tf.keras.Model but for PyTorch, with more useful information.

Table of Contents

Getting started

Prerequisites

  • Python 3.6 (or more recent)
  • pip

Installation

You can install the package using pypi as follows:

pip install torchscan

Usage

Similarly to the torchsummary implementation, torchscan brings useful module information into readable format. For nested complex architectures, you can use a maximum depth of display as follows:

from torchvision.models import densenet121
from torchscan import summary

model = densenet121().eval().cuda()
summary(model, (3, 224, 224), max_depth=2)

which would yield

__________________________________________________________________________________________
Layer                        Type                  Output Shape              Param #        
==========================================================================================
densenet                     DenseNet              (-1, 1000)                0              
├─features                   Sequential            (-1, 1024, 7, 7)          0              
|    └─conv0                 Conv2d                (-1, 64, 112, 112)        9,408          
|    └─norm0                 BatchNorm2d           (-1, 64, 112, 112)        257            
|    └─relu0                 ReLU                  (-1, 64, 112, 112)        0              
|    └─pool0                 MaxPool2d             (-1, 64, 56, 56)          0              
|    └─denseblock1           _DenseBlock           (-1, 256, 56, 56)         338,316        
|    └─transition1           _Transition           (-1, 128, 28, 28)         33,793         
|    └─denseblock2           _DenseBlock           (-1, 512, 28, 28)         930,072        
|    └─transition2           _Transition           (-1, 256, 14, 14)         133,121        
|    └─denseblock3           _DenseBlock           (-1, 1024, 14, 14)        2,873,904      
|    └─transition3           _Transition           (-1, 512, 7, 7)           528,385        
|    └─denseblock4           _DenseBlock           (-1, 1024, 7, 7)          2,186,272      
|    └─norm5                 BatchNorm2d           (-1, 1024, 7, 7)          4,097          
├─classifier                 Linear                (-1, 1000)                1,025,000      
==========================================================================================
Trainable params: 7,978,856
Non-trainable params: 0
Total params: 7,978,856
------------------------------------------------------------------------------------------
Model size (params + buffers): 30.76 Mb
Framework & CUDA overhead: 423.57 Mb
Total RAM usage: 454.32 Mb
------------------------------------------------------------------------------------------
Floating Point Operations on forward: 5.74 GFLOPs
Multiply-Accumulations on forward: 2.87 GMACs
Direct memory accesses on forward: 2.90 GDMAs
__________________________________________________________________________________________

Results are aggregated to the selected depth for improved readability.

For reference, here are explanations of a few acronyms:

  • FLOPs: floating-point operations (not to be confused with FLOPS which is FLOPs per second)
  • MACs: mutiply-accumulate operations (cf. wikipedia)
  • DMAs: direct memory accesses (many argue that it is more relevant than FLOPs or MACs to compare model inference speeds cf. wikipedia)

## Benchmark

Below are the results for classification models supported by torchvision for a single image with 3 color channels of size 224x224 (apart from inception_v3 which uses 299x299).

Model Params (M) FLOPs (G) MACs (G) DMAs (G)
alexnet 61.1 1.43 0.71 0.72
googlenet 6.62 3.01 1.51 1.53
vgg11 132.86 15.23 7.61 7.64
vgg11_bn 132.87 15.26 7.63 7.66
vgg13 133.05 22.63 11.31 11.35
vgg13_bn 133.05 22.68 11.33 11.37
vgg16 138.36 30.96 15.47 15.52
vgg16_bn 138.37 31.01 15.5 15.55
vgg19 143.67 39.28 19.63 19.69
vgg19_bn 143.68 39.34 19.66 19.72
resnet18 11.69 3.64 1.82 1.84
resnet34 21.8 7.34 3.67 3.7
resnet50 25.56 8.21 4.11 4.15
resnet101 44.55 15.66 7.83 7.9
resnet152 60.19 23.1 11.56 11.65
inception_v3 27.16 11.45 5.73 5.76
squeezenet1_0 1.25 1.64 0.82 0.83
squeezenet1_1 1.24 0.7 0.35 0.36
wide_resnet50_2 68.88 22.84 11.43 11.51
wide_resnet101_2 126.89 45.58 22.8 22.95
densenet121 7.98 5.74 2.87 2.9
densenet161 28.68 15.59 7.79 7.86
densenet169 14.15 6.81 3.4 3.44
densenet201 20.01 8.7 4.34 4.39
resnext50_32x4d 25.03 8.51 4.26 4.3
resnext101_32x8d 88.79 32.93 16.48 16.61
mobilenet_v2 3.5 0.63 0.31 0.32
shufflenet_v2_x0_5 1.37 0.09 0.04 0.05
shufflenet_v2_x1_0 2.28 0.3 0.15 0.15
shufflenet_v2_x1_5 3.5 0.6 0.3 0.31
shufflenet_v2_x2_0 7.39 1.18 0.59 0.6
mnasnet0_5 2.22 0.22 0.11 0.12
mnasnet0_75 3.17 0.45 0.23 0.24
mnasnet1_0 4.38 0.65 0.33 0.34
mnasnet1_3 6.28 1.08 0.54 0.56

The above results were produced using the scripts/benchmark.py script.

Technical roadmap

The project is currently under development, here are the objectives for the next releases:

  • Support of torch.nn.Module layers: ConvTranspose, Identity.

  • Package distribution: add a conda package.

  • Shared parameter support (cf. discussion)

  • Result exporting: add a csv export option.

  • Forward pass stat support: RAM usage for each layer, on forward pass.

  • Backward pass stat support: RAM usage for each layer, on backward pass.

  • Support of torch.nn.Module layers: GroupNorm, Upsample, PixelShuffle, RNN, LSTM, GRU, Embedding, Transformer.

  • Support of scripted modules

  • Support of torch.nn functional API

  • I/O handling: multiple inputs or outputs, non-tensor I/O

  • Add computational graph (cf. pytorchviz)

Documentation

The full package documentation is available here for detailed specifications. The documentation was built with Sphinx using a theme provided by Read the Docs.

Contributing

Please refer to CONTRIBUTING if you wish to contribute to this project.

Credits

This project is developed and maintained by the repo owner, but the implementation was inspired or helped by the following contributions:

License

Distributed under the MIT License. See LICENSE for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchscan-0.1.0.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

torchscan-0.1.0-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file torchscan-0.1.0.tar.gz.

File metadata

  • Download URL: torchscan-0.1.0.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torchscan-0.1.0.tar.gz
Algorithm Hash digest
SHA256 baf561e73cd7373c676d2c07e803ad4fdd070cac2320c370ba610cf7661f586e
MD5 9f4057b99fe23825e8074ddcef9a7e0a
BLAKE2b-256 c61a60b191ee8de9e01f3e4cbe76a76b534fc494ec32fff7e936e9b5d8d185d3

See more details on using hashes here.

File details

Details for the file torchscan-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: torchscan-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torchscan-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f92293133a629b192fa62084a241aac0b7c1c79541bf4b44c7874c64fd80774e
MD5 5086d557027e1bfce9125ea665506caf
BLAKE2b-256 011963627800c4cf1c463f1d3bdd264b6474d91afe0d865876efe35d09e62f5e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page