Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Text utilities and datasets for PyTorch

Project description


This repository consists of:

  • Generic data loaders, abstractions, and iterators for text (including vocabulary and word vectors)
  • torchtext.datasets: Pre-built loaders for common NLP datasets


Make sure you have Python 2.7 or 3.5+ and PyTorch 0.4.0 or newer. You can then install torchtext using pip:

pip install torchtext

For PyTorch versions before 0.4.0, please use pip install torchtext==0.2.3.

Optional requirements

If you want to use English tokenizer from SpaCy, you need to install SpaCy and download its English model:

pip install spacy
python -m spacy download en

Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses:

pip install sacremoses


Find the documentation here.


The data module provides the following:

  • Ability to describe declaratively how to load a custom NLP dataset that’s in a “normal” format:

    >>> pos = data.TabularDataset(
    ...    path='data/pos/pos_wsj_train.tsv', format='tsv',
    ...    fields=[('text', data.Field()),
    ...            ('labels', data.Field())])
    >>> sentiment = data.TabularDataset(
    ...    path='data/sentiment/train.json', format='json',
    ...    fields={'sentence_tokenized': ('text', data.Field(sequential=True)),
    ...            'sentiment_gold': ('labels', data.Field(sequential=False))})
  • Ability to define a preprocessing pipeline:

    >>> src = data.Field(tokenize=my_custom_tokenizer)
    >>> trg = data.Field(tokenize=my_custom_tokenizer)
    >>> mt_train = datasets.TranslationDataset(
    ...     path='data/mt/wmt16-ende.train', exts=('.en', '.de'),
    ...     fields=(src, trg))
  • Batching, padding, and numericalizing (including building a vocabulary object):

    >>> # continuing from above
    >>> mt_dev = datasets.TranslationDataset(
    ...     path='data/mt/newstest2014', exts=('.en', '.de'),
    ...     fields=(src, trg))
    >>> src.build_vocab(mt_train, max_size=80000)
    >>> trg.build_vocab(mt_train, max_size=40000)
    >>> # mt_dev shares the fields, so it shares their vocab objects
    >>> train_iter = data.BucketIterator(
    ...     dataset=mt_train, batch_size=32,
    ...     sort_key=lambda x: data.interleave_keys(len(x.src), len(x.trg)))
    >>> # usage
    >>> next(iter(train_iter))
    <data.Batch(batch_size=32, src=[LongTensor (32, 25)], trg=[LongTensor (32, 28)])>
  • Wrapper for dataset splits (train, validation, test):

    >>> TEXT = data.Field()
    >>> LABELS = data.Field()
    >>> train, val, test = data.TabularDataset.splits(
    ...     path='/data/pos_wsj/pos_wsj', train='_train.tsv',
    ...     validation='_dev.tsv', test='_test.tsv', format='tsv',
    ...     fields=[('text', TEXT), ('labels', LABELS)])
    >>> train_iter, val_iter, test_iter = data.BucketIterator.splits(
    ...     (train, val, test), batch_sizes=(16, 256, 256),
    >>>     sort_key=lambda x: len(x.text), device=0)
    >>> TEXT.build_vocab(train)
    >>> LABELS.build_vocab(train)


The datasets module currently contains:

  • Sentiment analysis: SST and IMDb
  • Question classification: TREC
  • Entailment: SNLI, MultiNLI
  • Language modeling: abstract class + WikiText-2, WikiText103, PennTreebank
  • Machine translation: abstract class + Multi30k, IWSLT, WMT14
  • Sequence tagging (e.g. POS/NER): abstract class + UDPOS, CoNLL2000Chunking
  • Question answering: 20 QA bAbI tasks
  • Text classification: AG_NEWS, SogouNews, DBpedia, YelpReviewPolarity, YelpReviewFull, YahooAnswers, AmazonReviewPolarity, AmazonReviewFull

Others are planned or a work in progress:

  • Question answering: SQuAD

See the test directory for examples of dataset usage.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for torchtext, version 0.4.0
Filename, size File type Python version Upload date Hashes
Filename, size torchtext-0.4.0-py3-none-any.whl (53.1 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size torchtext-0.4.0.tar.gz (45.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page