Skip to main content

Enhance torchvision for multi-channel images, 16-bit image, segmentation...

Project description

# torchvision-enhance

torchvision-enhance is used to enhance the offical PyTorch vision library torchvision. Here is the enhanced parts:
- support multi-channel(> 4 channels, e.g. 8 channels) images
- support 16-bit TIF file
- more easier to semantic segmentation transform



## Support transforms
- RandomFlip
- RandomVFlip
- RandomHFlip
- RandomRotate
- RandomShift
- RandomCrop
- CenterCrop
- Resize
- Pad
- GaussianBlur
- PieceTransform
- Lambda
- ToTensor
- Normalize

## Install
```
pip install torchvision-enhance
```

or install from the source

```
git clone
pip install -r requirements.txt
python setup.py install
```
## Dependencies
- numpy
- scipy
- Pillow
- PyTorch
- opencv
- scikit-image

## Usage
For more useage, check out the [example-classification.py](./test/example-classification.py) and [example-segmentation.py](./test/example-segmentation.py)

``` python
from torchvision_x.datasets import image_loader
from torchvision_x.transforms import transforms_seg,functional

transform = transforms_seg.SegCompose([
# transforms_seg.SegFlip(),
transforms_seg.SegVFlip(),
# transforms_seg.SegHFlip(),
# transforms_seg.SegRandomFlip(),
# transforms_seg.SegRandomRotate(90),
# transforms_seg.SegRandomShift(40),
# transforms_seg.SegRandomCrop((256,256)),
# transforms_seg.SegCenterCrop(224),
# transforms_seg.SegResize(224),
# transforms_seg.SegPad(20),
# transforms_seg.SegNoise(dtype='uint16', var=0.001), #TODO
# transforms_seg.SegGaussianBlur(sigma=2, dtype='uint8', multichannel=False),
# transforms_seg.SegPieceTransform(),
# transforms_seg.SegLambda(lambda x: functional.to_tensor(x))
transforms_seg.SegToTensor(),
transforms_seg.SegNormalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
])

trainset = image_loader.SemanticSegmentationLoader(
rootdir='sample-data/', lstpath='sample-data/segmentation_jpg.lst',
filetype='jpg', transform=transform,
)
trainloader = DataLoader(dataset=trainset,batch_size=batch_size,shuffle=False)

for step, (inputs, targets) in enumerate(trainloader):
print('batch: {} ........'.format(step))
print(type(inputs), inputs.shape)
print(type(targets), targets.shape)
```

## TODO
- Noise

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchvision-enhance-0.1.3.tar.gz (13.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page