OpenTelemetry instrumentation for Haystack
Project description
Haystack OpenTelemetry Integration
Overview
This integration provides support for using OpenTelemetry with the Haystack framework. It enables tracing and monitoring of applications built with Haystack.
Installation
- Install traceAI Haystack
pip install traceAI-haystack
Set Environment Variables
Set up your environment variables to authenticate with FutureAGI
import os
os.environ["FI_API_KEY"] = FI_API_KEY
os.environ["FI_SECRET_KEY"] = FI_SECRET_KEY
Quickstart
Register Tracer Provider
Set up the trace provider to establish the observability pipeline. The trace provider:
from fi_instrumentation import register
from fi_instrumentation.fi_types import ProjectType
trace_provider = register(
project_type=ProjectType.OBSERVE,
project_name="haystack_app"
)
Configure Haystack Instrumentation
Instrument the Haystack client to enable telemetry collection. This step ensures that all interactions with the Haystack SDK are tracked and monitored.
from traceai_haystack import HaystackInstrumentor
HaystackInstrumentor().instrument(tracer_provider=trace_provider)
Create Haystack Components
from haystack import Document, Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.embedders import (
SentenceTransformersDocumentEmbedder,
SentenceTransformersTextEmbedder,
)
from haystack.components.generators import OpenAIGenerator
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
from datasets import load_dataset
document_store = InMemoryDocumentStore()
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
doc_embedder = SentenceTransformersDocumentEmbedder(
model="sentence-transformers/all-MiniLM-L6-v2"
)
doc_embedder.warm_up()
docs_with_embeddings = doc_embedder.run(docs)
document_store.write_documents(docs_with_embeddings["documents"])
text_embedder = SentenceTransformersTextEmbedder(
model="sentence-transformers/all-MiniLM-L6-v2"
)
retriever = InMemoryEmbeddingRetriever(document_store)
template = """
Given the following information, answer the question.
Context:
{% for document in documents %}
{{ document.content }}
{% endfor %}
Question: {{question}}
Answer:
"""
prompt_builder = PromptBuilder(template=template)
generator = OpenAIGenerator(model="gpt-3.5-turbo")
basic_rag_pipeline = Pipeline()
basic_rag_pipeline.add_component("text_embedder", text_embedder)
basic_rag_pipeline.add_component("retriever", retriever)
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
basic_rag_pipeline.add_component("llm", generator)
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
basic_rag_pipeline.connect("prompt_builder", "llm")
question = "What does Rhodes Statue look like?"
response = basic_rag_pipeline.run(
{"text_embedder": {"text": question}, "prompt_builder": {"question": question}}
)
print(response["llm"]["replies"][0])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file traceai_haystack-0.1.7.tar.gz
.
File metadata
- Download URL: traceai_haystack-0.1.7.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.0.0 CPython/3.13.0 Darwin/24.1.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
9a195977245bd6a17c71271d1fa4e130e2de0823c5676e4de068b770d2d50d64
|
|
MD5 |
88daca52b78cc562d82b6e1b5ef96b9a
|
|
BLAKE2b-256 |
359a54fe8e46fd00158ad5a24e782212887a68adf50efdc919fe123f2f1e7c7d
|
File details
Details for the file traceai_haystack-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: traceai_haystack-0.1.7-py3-none-any.whl
- Upload date:
- Size: 9.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/2.0.0 CPython/3.13.0 Darwin/24.1.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
fa23a79bab28743e2a09cac120e84fabe6cdaf69939e1270d665f78be3a05751
|
|
MD5 |
555ef43f60ec55512b282f075d6ad142
|
|
BLAKE2b-256 |
3159aebd581d9e7b146d8a50db3224c534ff6fbb44842dd66249e0038449f247
|