Skip to main content

trading with Python and IG markets API

Project description

Latest Version Supported Python versions Download format License Development Status https://sourcegraph.com/api/repos/github.com/femtotrader/ig-markets-rest-api-python-library/.badges/status.png https://badges.gitter.im/Join%20Chat.svg https://travis-ci.org/femtotrader/ig-markets-rest-api-python-library.svg?branch=master

IG Markets REST API - Python Library

A lightweight Python library that can be used to connect to the IG Markets REST API with a LIVE or DEMO account.

You can use the IG Markets HTTP / REST API to submit trade orders, open positions, close positions and view market sentiment. IG Markets provide Retail Spread Betting and CFD accounts for trading Equities, Forex, Commodities, Indices and much more.

Full details about the API along with information about how to open an account with IG can be found at the link below:

http://labs.ig.com/

How To Use The Library

Using this library to connect to the IG Markets API is extremely easy. All you need to do is import the IGService class, create an instance, and call the methods you wish to use. There is a method for each endpoint exposed by their API. The code sample below shows you how to connect to the API, switch to a secondary account and retrieve all open positions for the active account.

Note: The secure session with IG is established when you create an instance of the IGService class.

from trading_ig import IGService
from trading_ig_config import config

ig_service = IGService(config.username, config.password, config.api_key, config.acc_type)
ig_service.create_session()

account_info = ig_service.switch_account(config.acc_number, False) # not necessary
print(account_info)

open_positions = ig_service.fetch_open_positions()
print("open_positions:\n%s" % open_positions)

print("")

epic = 'CS.D.EURUSD.MINI.IP'
resolution = 'D'
num_points = 10
response = ig_service.fetch_historical_prices_by_epic_and_num_points(epic, resolution, num_points)
df_ask = response['prices']['ask']
print("ask prices:\n%s" % df_ask)

with trading_ig_config.py

class config(object):
    username = "YOUR_USERNAME"
    password = "YOUR_PASSWORD"
    api_key = "YOUR_API_KEY"
    acc_type = "DEMO" # LIVE / DEMO
    acc_number = "ABC123"

Config can also be set as environment variable

export IG_SERVICE_USERNAME="..."
export IG_SERVICE_PASSWORD="..."
export IG_SERVICE_API_KEY="..."
export IG_SERVICE_ACC_TYPE="DEMO" # LIVE / DEMO
export IG_SERVICE_ACC_NUMBER="..."

and we can get it using

from trading_ig import ConfigEnvVar
config = ConfigEnvVar("IG_SERVICE")

it should display:

open_positions:
Empty DataFrame
Columns: []
Index: []

ask prices:
                        Open     High      Low    Close
DateTime
2014:11:18-00:00:00  1.24510  1.25465  1.24442  1.25330
2014:11:19-00:00:00  1.25332  1.26013  1.25127  1.25461
2014:11:20-00:00:00  1.25463  1.25760  1.25048  1.25427
2014:11:21-00:00:00  1.25428  1.25689  1.23755  1.23924
2014:11:23-00:00:00  1.23640  1.23770  1.23607  1.23725
2014:11:24-00:00:00  1.23864  1.24453  1.23830  1.24390
2014:11:25-00:00:00  1.24389  1.24877  1.24026  1.24743
2014:11:26-00:00:00  1.24744  1.25322  1.24443  1.25077
2014:11:27-00:00:00  1.25078  1.25244  1.24569  1.24599
2014:11:28-00:00:00  1.24598  1.24909  1.24269  1.24505

Many IGService methods return Python Pandas DataFrame, Series or Panel.

Cache queries requests-cache

Set CachedSession using:

from datetime import datetime, timedelta
import requests_cache
session = requests_cache.CachedSession(cache_name='cache', backend='sqlite', expire_after=timedelta(hours=1))
# set expire_after=None if you don't want cache expiration
# set expire_after=0 if you don't want to cache queries

CachedSession can be applied globally on IGService

ig_service = IGService(config.username, config.password, config.api_key, config.acc_type, session)
ig_service.create_session()

or just for a given method (like fetching prices)

epic = 'CS.D.EURUSD.MINI.IP'
resolution = 'D'
start_date = '2014-12-15'
end_date = '2014-12-20'
response = ig_service.fetch_historical_prices_by_epic_and_date_range(epic, resolution, start_date, end_date, session)

Install

From Python package index

$ pip install trading_ig

From source

Get latest version using Git

$ git clone https://github.com/femtotrader/ig-markets-rest-api-python-library.git
$ cd ig-markets-rest-api-python-library
$ python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

trading_ig-0.0.5.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

trading_ig-0.0.5-py2.py3-none-any.whl (14.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file trading_ig-0.0.5.tar.gz.

File metadata

  • Download URL: trading_ig-0.0.5.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for trading_ig-0.0.5.tar.gz
Algorithm Hash digest
SHA256 0da12d6ee8b2b33595f173a7c079b5125c26172baa28cd8662fda76ee0203289
MD5 492c6539f19c6c8ac56f3350acdb9f35
BLAKE2b-256 7f71c9da8679c0338f297650493f6ad62be228986a68c37171044095db0100c5

See more details on using hashes here.

File details

Details for the file trading_ig-0.0.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for trading_ig-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2b09bf93baf67a87ea6abfd0aec5fcc283d171833429eaf266b7b632c10dbe44
MD5 49904233caafeed9f9cd1102c3f23fb0
BLAKE2b-256 15a9089dd3fcd4e12b5c1e538656b25764ed1cc344dc7886f02416d357a0188d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page