Skip to main content

onnx model for transformers pipeline

Project description

transformer_onnx

transformers_onnx is a simple package which can use inside transformers pipeline.

Install

pip install transformers_onnx

Convert model into Onnx format

#for question-answering
python -m transformers.onnx --feature "question-answering" -m nlpconnect/roberta-base-squad2-nq ./qa/

#for text-classification or zeroshot classification
python -m transformers.onnx --feature "sequence-classification" -m cross-encoder/nli-roberta-base ./classifier/

#for feature-extraction (last_hidden_state or pooler_output)
python -m transformers.onnx --feature "default" -m nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2 ./feature/

#for token-classification
python -m transformers.onnx --feature "token-classification" -m dslim/bert-base-NER ./ner/

Use transformers_onnx to run transformers pipeline

Question Answering

from transformers import pipeline, AutoTokenizer, AutoConfig
from transformer_onnx import OnnxModel

model = OnnxModel("qa/model.onnx", task="question-answering")
model.config = AutoConfig.from_pretrained("nlpconnect/roberta-base-squad2-nq")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/roberta-base-squad2-nq")
qa = pipeline("question-answering", model=model, tokenizer=tokenizer)

# Input data
context = ["Released on 6/03/2021",
        "Release delayed until the 11th of August",
        "Documentation can be found here: huggingface.com"]
# Define column queries
queries = ["What is Released date?", "till when delayed?", "What is the url?"]
qa(context=context, question=queries)

Text Classification/ Zero shot classification

from transformers import pipeline, AutoTokenizer, AutoConfig
from transformer_onnx import OnnxModel

model = OnnxModel("classifier/model.onnx", task="sequence-classification")
model.config = AutoConfig.from_pretrained("cross-encoder/nli-roberta-base")
tokenizer = AutoTokenizer.from_pretrained("cross-encoder/nli-roberta-base")
zero_shot = pipeline("zero-shot-classification", model=model, tokenizer=tokenizer)
zero_shot(sequences=["Hello Hiiii", "I am playing football"], candidate_labels=["Greeting", "Sports"])

Feature Extraction

from transformers import pipeline, AutoTokenizer, AutoConfig
from transformer_onnx import OnnxModel

# for last_hidden_state
model = OnnxModel("feature/model.onnx", task="last_hidden_state")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
feature_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer)
feature_extractor(["Hello Hiiii", "I am playing football"])

# for pooler_output
model = OnnxModel("feature/model.onnx", task="pooler_output")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
feature_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer)
feature_extractor(["Hello Hiiii", "I am playing football"])

NER

from transformers import pipeline, AutoTokenizer, AutoConfig
from transformer_onnx import OnnxModel

model = OnnxModel("ner/model.onnx", task="token-classification")
model.config = AutoConfig.from_pretrained("dslim/bert-base-NER")
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
ner = pipeline("token-classification", model=model, tokenizer=tokenizer)
ner("My name is transformers and I live in github/huggingface")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

transformers_onnx-0.0.2.tar.gz (8.7 kB view hashes)

Uploaded Source

Built Distribution

transformers_onnx-0.0.2-py3-none-any.whl (8.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page