Skip to main content

Compute geodesic distances

Project description

The tvb-gdist module is a Cython interface to a C++ library (https://code.google.com/archive/p/geodesic/) for computing geodesic distance which is the length of shortest line between two vertices on a triangulated mesh in three dimensions, such that the line lies on the surface.

The algorithm is due Mitchell, Mount and Papadimitriou, 1987; the implementation is due to Danil Kirsanov and the Cython interface to Gaurav Malhotra and Stuart Knock (TVB Team).

Original library (published under MIT license): https://code.google.com/archive/p/geodesic/

We added a Python wrapped and made small fixes to the original library, to make it compatible with Cython.

To install this, either run pip install tvb-gdist or download sources from GitHub and run python setup.py install in current folder.

You can also use pip to directly install from GitHub: pip install git+https://github.com/the-virtual-brain/tvb-gdist.

Basic test could be:

python
import gdist

Python 3, Cython, and a C++ compiler are required unless the Pypi whl files are compatible with your system.

APIs

The module exposes 2 APIs.

gdist.compute_gdist(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, numpy.ndarray[numpy.int32_t, ndim=1] source_indices = None, numpy.ndarray[numpy.int32_t, ndim=1] target_indices = None, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

This is the wrapper function for computing geodesic distance between a set of sources and targets on a mesh surface.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

source_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the

source on the mesh.

target_indices (numpy.ndarray[numpy.int32_t, ndim=1]): Index of the

targets on the mesh.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:
numpy.ndarray((len(target_indices), ), dtype=numpy.float64): Specifying

the shortest distance to the target vertices from the nearest source vertex on the mesh. If no target_indices are provided, all vertices of the mesh are considered as targets, however, in this case, specifying max_distance will limit the targets to those vertices within max_distance of a source. If no source_indices are provided, it defaults to 0.

NOTE: This is the function to use when specifying localised stimuli and parameter variations. For efficiently using the whole mesh as sources, such as is required to represent local connectivity within the cortex, see the local_gdist_matrix() function.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> src = numpy.array([1], dtype=numpy.int32)
>>> trg = numpy.array([2], dtype=numpy.int32)
>>> import gdist
>>> gdist.compute_gdist(vertices, triangles, source_indices=src, target_indices=trg)
 array([0.2])

gdist.local_gdist_matrix(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

This is the wrapper function for computing geodesic distance from every vertex on the surface to all those within a distance max_distance of them.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:

scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N is the number of vertices, specifying the shortest distance from all vertices to all the vertices within max_distance.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> import gdist
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> gdist.local_gdist_matrix(vertices, triangles, max_distance=1.0)
 <121x121 sparse matrix of type '<type 'numpy.float64'>'
     with 6232 stored elements in Compressed Sparse Column format>

Runtime and guesstimated memory usage as a function of max_distance for the reg_13 cortical surface mesh, ie containing 2**13 vertices per hemisphere. :: [[10, 20, 30, 40, 50, 60, 70, 80, 90, 100], # mm [19, 28, 49, 81, 125, 181, 248, 331, 422, 522], # s [ 3, 13, 30, 56, 89, 129, 177, 232, 292, 358]] # MB]

where memory is a min-guestimate given by: mem_req = nnz * 8 / 1024 / 1024.

gdist.distance_matrix_of_selected_points(numpy.ndarray[numpy.float64_t, ndim=2] vertices, numpy.ndarray[numpy.int32_t, ndim=2] triangles, numpy.ndarray[numpy.int32_t, ndim=1] points, double max_distance = GEODESIC_INF, bool is_one_indexed = False)

Function for calculating pairwise geodesic distance for a set of points within a distance max_distance of them.

Args:
vertices (numpy.ndarray[numpy.float64_t, ndim=2]): Defines x,y,z

coordinates of the mesh’s vertices.

triangles (numpy.ndarray[numpy.float64_t, ndim=2]): Defines faces of

the mesh as index triplets into vertices.

points (numpy.ndarray[numpy.int32_t, ndim=1]): Indices of the points

among which the pairwise distances are to be calculated.

max_distance (double): Propagation algorithm stops after reaching the

certain distance from the source.

is_one_indexed (bool): defines if the index of the triangles data is

one-indexed.

Returns:
scipy.sparse.csc_matrix((N, N), dtype=numpy.float64): where N

is the number of vertices, specifying the pairwise distances among the given points.

Basic usage then looks like::
>>> import numpy
>>> temp = numpy.loadtxt("data/flat_triangular_mesh.txt", skiprows=1)
>>> vertices = temp[0:121].astype(numpy.float64)
>>> triangles = temp[121:321].astype(numpy.int32)
>>> points = numpy.array([2, 5, 10], dtype=numpy.int32)
>>> import gdist
>>> gdist.distance_matrix_of_selected_points(
        vertices, triangles, points
    )
 <121x121 sparse matrix of type '<class 'numpy.float64'>'
    with 6 stored elements in Compressed Sparse Column format>

Notes

  • The obtained matrix will be almost symmetrical due to floating point imprecision.

  • In order for the algorithm to work the mesh must not be numbered incorrectly or disconnected or of somehow degenerate.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 826421 - VirtualBrainCloud.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tvb_gdist-2.9.2.tar.gz (141.9 kB view details)

Uploaded Source

Built Distributions

tvb_gdist-2.9.2-cp313-cp313-win_amd64.whl (96.1 kB view details)

Uploaded CPython 3.13Windows x86-64

tvb_gdist-2.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (802.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp313-cp313-macosx_11_0_arm64.whl (98.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp313-cp313-macosx_10_13_x86_64.whl (104.2 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

tvb_gdist-2.9.2-cp312-cp312-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.12Windows x86-64

tvb_gdist-2.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (803.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp312-cp312-macosx_11_0_arm64.whl (99.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp312-cp312-macosx_10_13_x86_64.whl (105.1 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

tvb_gdist-2.9.2-cp311-cp311-win_amd64.whl (97.1 kB view details)

Uploaded CPython 3.11Windows x86-64

tvb_gdist-2.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (809.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp311-cp311-macosx_11_0_arm64.whl (99.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp311-cp311-macosx_10_9_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

tvb_gdist-2.9.2-cp310-cp310-win_amd64.whl (97.0 kB view details)

Uploaded CPython 3.10Windows x86-64

tvb_gdist-2.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (784.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp310-cp310-macosx_11_0_arm64.whl (99.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp310-cp310-macosx_10_9_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

tvb_gdist-2.9.2-cp39-cp39-win_amd64.whl (97.0 kB view details)

Uploaded CPython 3.9Windows x86-64

tvb_gdist-2.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (784.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp39-cp39-macosx_11_0_arm64.whl (99.4 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp39-cp39-macosx_10_9_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

tvb_gdist-2.9.2-cp38-cp38-win_amd64.whl (97.1 kB view details)

Uploaded CPython 3.8Windows x86-64

tvb_gdist-2.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (787.4 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp38-cp38-macosx_11_0_arm64.whl (99.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

tvb_gdist-2.9.2-cp38-cp38-macosx_10_9_x86_64.whl (104.4 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

tvb_gdist-2.9.2-cp37-cp37m-win_amd64.whl (97.1 kB view details)

Uploaded CPython 3.7mWindows x86-64

tvb_gdist-2.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (769.4 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp37-cp37m-macosx_10_9_x86_64.whl (105.5 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

tvb_gdist-2.9.2-cp36-cp36m-win_amd64.whl (100.8 kB view details)

Uploaded CPython 3.6mWindows x86-64

tvb_gdist-2.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (751.8 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

tvb_gdist-2.9.2-cp36-cp36m-macosx_10_9_x86_64.whl (103.2 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file tvb_gdist-2.9.2.tar.gz.

File metadata

  • Download URL: tvb_gdist-2.9.2.tar.gz
  • Upload date:
  • Size: 141.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2.tar.gz
Algorithm Hash digest
SHA256 9f8843d4fd4a945979e3f26a87da895022d45145775228fa706a43caa8965df8
MD5 8b230e9b493322d8ea88fdffd9cd4cef
BLAKE2b-256 0d2df477ec8611b82a4fa1620cb429c89814e3eeb9a8554546dc25da5a09f3c5

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 96.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 013bf9d0089cb786b79b3828a833666e88ad03556f342e253038dde8ea36766e
MD5 b6c8786f4d1f7d685e15a462d9d0d909
BLAKE2b-256 1ae27623c427770172ea23ee6fc6196820ef04e1d5fa6640724a5a95ede8cad2

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24b75bf2f11d7d5221e0595a7fbe36bd6044864df5f5f90cd9528420d7ac5446
MD5 2d7a3f2fe692ede8975aaafa022fab36
BLAKE2b-256 fc7a5eb5ef0264a3025b316d2e93c84c626e28f6bc0ed8fd55a5ac4be4607ce1

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7f80211d1a590a7ba730c23decdb95af9cda1fde13a6ea4e4ed4ff42df7458a
MD5 c32a82a905ad34456133d70b43930984
BLAKE2b-256 a17b4ca1a4c6acfe0e8f0eb18ef4d111236f36994d70500d535b759b3feea483

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5acf2273c9b392e78107a740de21069165d7eab73095c6839ef5a70990b68f8b
MD5 d551ac11716245d99a4d7b88dd27a06e
BLAKE2b-256 5f656726c8d2f6a8b12a485a213c7419319278f9ccfef2d7b536d019bb5cd577

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 134d05b9ca5738ce68af829925d900a5eda034e939eed3be0416476c98a8c3f4
MD5 86387214c283cff876511cd3c3df3ee5
BLAKE2b-256 8cab0d833d8701789d3971b1766546638fc58db1602f25b1935762ded975d04e

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c747c09786cd94cd8c8a094394f19444880af8d3c7df1771db99171a9edb5df5
MD5 36c5e492058be7a0644a7bd03421131c
BLAKE2b-256 34b9e8ff3a78b72065f648ba30b3e0c02d19f9bbfc0f1a7de6bcfd7148f8a9f6

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a06b93251bf814562b3297f015e7548e3762d53a533dd555024d8ecf63333094
MD5 2c5a51c4da1b83bebf97b2d94cfda511
BLAKE2b-256 d7defced8a2a4a947c595c1cb11aeb94d91ffdc91279fbb05ee6f661d2143551

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2b5fc3e59a4885dcfcbf4a1890e5490cb5e1fdc3690f9597d993327cec3fb6b4
MD5 17cf9f03095875e95008c49b09c570fe
BLAKE2b-256 f17a70fdd058ce142992d037ace380ef7ab4d01ef725d8ea8889d36105633e0c

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 97.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d9e43674ae68ca62088b326ca0daf51164cfddde7ccfe68c86d8a15d374e812d
MD5 55655e26b4f73138647092f988d946da
BLAKE2b-256 70834ee6d1ea842b66c1d58488910a82f48b5b8e17f3335785573bce72fbc703

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e0ff9921349b25bac7ea09b72c63f0f5941ca9767ff2d759658db0f630ccf00
MD5 ac1e062c0cbccbc05ed6a0459f987c61
BLAKE2b-256 ef4b7c810a0877d2dcb34b2624e97894bde7e4557a83d0527326d9ab91d8210f

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ccc40144ebb5c455dbf4a9aa7375ecf1769e9d215a2d9fc9434fda514e30329
MD5 f48dbb09e9b054e9e160dc19340db7c2
BLAKE2b-256 dfab0340dd2a62e4f1466c68e861a79b7b481a99576bf0754d1852a70f0ee380

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4d1b579a32cd1be12bea581c1c1ed30aedda6f40cd42f2df1e7556d121730db9
MD5 4242e2f91eda3cc976711264cbaebee6
BLAKE2b-256 c96679c6bd6e640818b4b146966e8ac1a332945f05f16ad348d5cab69f2c2ad8

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 97.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3c1b3b344e00504356404e84b39f01cf3c39d4c10d4208ecdb3b2d31d81bf5f8
MD5 0e98d26bd251d501185525d8833cbfb0
BLAKE2b-256 78dc51a1a89663c6ebde2e2ecb4061a62ba9dd6c91c9c6e3db060f1431e4c58a

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b18e55c2de0e53fbc4d741484d9dbc0e0f258ff5d5134e84555077fd924c24c
MD5 e2a09418d62030ede7ffe18be91a4f7f
BLAKE2b-256 dbc568ed3fe7f7357d90b17ade19220ae737be1d09dc568af33d766c24cb3d18

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7de138ba658ef8295751f099ca141af0a2fdefb3092405dc816e029869b3423
MD5 537a40b6c1eae2288d41a45b0bb2f465
BLAKE2b-256 a1271b512c2011759fc7cf2aec3be7d0fbbcb3269be504f16e22fb43f25ea21a

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9752728552278ec1810a57ec3951efc31bc1fced40a86b5359df00d70d539aa6
MD5 efdcd41cd8f469fc86b677be83ef3592
BLAKE2b-256 2ad433058b16f8dd5c8a327bdc3f1e5d8ac01fdbb2e1c1d1d936cfce41cc0ebf

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 97.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8fc271432c147cdec003353a21a6ab6eb5900a626f55ce32be9e0da130746ee
MD5 e9d5ec2baf0e4b03bd92f6453ff3610f
BLAKE2b-256 877e372512b5c782bbf60fe7630fdcecc3ab13746ec078268790a9643c18cff5

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54807128ec66a67ecb53c357ec174729ecbd0aefe54eb0e934a3d6822b104a5c
MD5 41de495e9705f2e719eed0b9a242a76a
BLAKE2b-256 24c213bcbf037d1f4293154f367ad75a92504d13031496f37a6b98d42dbfffbc

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6fe2ea4eef590c4e88f1cb1c014a25f6c3df782c173a48bcb9e428a4f9f42ffa
MD5 a7923093e8ebe128b1b77634e5316ecc
BLAKE2b-256 54beb601f33e5b9329d66964df6e269227c544220b235fc1b658069e44647deb

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9f6c7a34f545e226bef61e82323a8f3b623c69ebaba5bf70fa13e2164ffe895
MD5 58b20e2e8ac02e1f1d24f2b5d99dec81
BLAKE2b-256 718db1695796a863921c4783964ed82ca9cffcf1bffc0e7c180e9e13c97c9f20

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 97.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 92d91c7f937ebd30db860a0d674c0022360ca8b397dd53e17d5f7fefab152858
MD5 d918d9fdba4d3f5469c65a1312ffce18
BLAKE2b-256 0a9343936d737acf94dac847c5f32be12b61224cd2134aeaf39c4e32fbdf0016

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88ed21c2d8fb1886ddb4c4923a9dd0c510468b3882a70ae0e56fe5d87d5d339b
MD5 a4f9a7219afa3e13d347bc8d4aefec57
BLAKE2b-256 73f08f22620cee248d47b272557ddc2536c8294069370aa608a9aa93510b48e8

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dec38fc98b5b0085bc504a73e1e14e5239573f77271383cc476959b23f3d3e7
MD5 8e95a3f2ac254e6ca253b012e0079275
BLAKE2b-256 a277ff987de5a1a43337c650c8c49a9ee53c54a3153ab621ebb65836e0956187

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f9a6ca212d07f545369f97108e9463dc7596dc8252746507432853cda537b30
MD5 6463928ac0443df66efed52507595a79
BLAKE2b-256 5f6b7ee0fd94aa8f7ceb66f8b2008fbfdb42518a5030cbcd546756d3b5afbbe1

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 97.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 51951c9cdeb5a021d55a5441cea256c640d40fca2dcfa52dfbc78e3f19b9f331
MD5 7d7050545e2476e7a48c58566ac39653
BLAKE2b-256 ff174284fc61f30e180f2f468930892fca36703c24f13f3492362d5638101370

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce0186f66acc18d914b0e628d5786050839d9d5bb9dafe9ccdc0f5485fca4791
MD5 8fc8e6d7daf571a46e53e7c3858b531e
BLAKE2b-256 66a48b08e6bdaf9f7feb20f8b6389fa9875b29a67a188ec46693988596eee91b

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4c836b6a9985c77d175111056aec4952744864e46c4a334f603ce3ef8403530
MD5 3ddf65c9cda0c07e5d9bd6e4425a265b
BLAKE2b-256 1717ce139aaf908a4b12ff7f30bef5073c61210d3037ea8b7d23b74a0977847d

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tvb_gdist-2.9.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 100.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for tvb_gdist-2.9.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ea177053b78eba50a800c11f5980927eff8ec50a2f393e12058892851fa98ac2
MD5 24ba9470fe5c62256a215fbc699b9425
BLAKE2b-256 cc15d7c084a4fe5d5d0b011b7079afba84cf3b9bb4d263a15344c82df1d38815

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c0294a863d1a53abce196b3fc00850f6513ce7a3ec4e2a3b9a679c01d56354c
MD5 ddf6ddb3aed81e099199938a6e4b0bed
BLAKE2b-256 43711537f7a5c263d4fe8b8bf503485921cae63e849f385cbdeded2990cb7f53

See more details on using hashes here.

File details

Details for the file tvb_gdist-2.9.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tvb_gdist-2.9.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a4cceba2725792ac2b1dfc1ca134a7f10d75fe8d74860cd9b99374dac2937a0
MD5 fa84aba12574ef34fae2dd57faac136d
BLAKE2b-256 798d44cb3a8814a22d8250f37c284a10b756382cd8746cc1ca5c8e4b422b9ffb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page