Skip to main content

do virtual brains eat computational popcorn?

Project description

tvbk

Computational kernels for tvb.

setup

My local dev setup is in VS Code w/ Python, C/C++ extensions, and a venv setup for incremental rebuilds like so

rm -rf build env
uv venv env
source env/bin/activate
uv pip install nanobind 'scikit-build-core[pyproject]' pytest pytest-benchmark numpy cibuildwheel scipy 
uv pip install --no-build-isolation -Ceditable.rebuild=true -ve .

following https://nanobind.readthedocs.io/en/latest/packaging.html#step-5-incremental-rebuilds. This enables editing and running the tests directly, with changes to the C++ automatically taken into account, just running

pytest

will rebuild the C++ if required. This also occurs on import in e.g. a Jupyter kernel.

next

  • make first release to start integrating w/ TVB

  • all the neural mass models

  • add bold

  • refactor buffers

  • rm scipy dep for sparsity

  • cuda/hip/webgpu or something

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

tvbk-0.5-cp312-abi3-win_amd64.whl (73.5 kB view details)

Uploaded CPython 3.12+Windows x86-64

tvbk-0.5-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106.5 kB view details)

Uploaded CPython 3.12+manylinux: glibc 2.17+ x86-64

tvbk-0.5-cp312-abi3-macosx_11_0_arm64.whl (88.9 kB view details)

Uploaded CPython 3.12+macOS 11.0+ ARM64

tvbk-0.5-cp311-cp311-win_amd64.whl (75.1 kB view details)

Uploaded CPython 3.11Windows x86-64

tvbk-0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

tvbk-0.5-cp311-cp311-macosx_11_0_arm64.whl (90.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

tvbk-0.5-cp310-cp310-win_amd64.whl (75.3 kB view details)

Uploaded CPython 3.10Windows x86-64

tvbk-0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

tvbk-0.5-cp310-cp310-macosx_11_0_arm64.whl (91.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

tvbk-0.5-cp39-cp39-win_amd64.whl (75.8 kB view details)

Uploaded CPython 3.9Windows x86-64

tvbk-0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

tvbk-0.5-cp39-cp39-macosx_11_0_arm64.whl (91.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

tvbk-0.5-cp38-cp38-win_amd64.whl (75.1 kB view details)

Uploaded CPython 3.8Windows x86-64

tvbk-0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (109.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

tvbk-0.5-cp38-cp38-macosx_11_0_arm64.whl (90.2 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file tvbk-0.5-cp312-abi3-win_amd64.whl.

File metadata

  • Download URL: tvbk-0.5-cp312-abi3-win_amd64.whl
  • Upload date:
  • Size: 73.5 kB
  • Tags: CPython 3.12+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 d5aae43e8f5c2c3929af67e3411793048e26dfb603889fadc154ffc09a20908f
MD5 2688ef01899da5a1b09aeb2bf1d17865
BLAKE2b-256 1789542d71cd1bd52fc33848f40d710c789b6beb01fbbe707be92dac1e8a859c

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvbk-0.5-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 088d4572f36a5f747f3d39fa82f266a03c679a3074f8984b90e6f1a680e7ba4a
MD5 f64f4cbd8709170129ed5e912fa854c5
BLAKE2b-256 a0859616de2167e83f71fbe9f4ecd78e44499fe4f4ab84538efbb7c59784062b

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp312-abi3-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tvbk-0.5-cp312-abi3-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.12+, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp312-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69f869fa40528c7b49b5912363ac3adfb97adb3061cd21b524800e4347cc940c
MD5 76a2ca4e78cbbc5827ee8d240d20668f
BLAKE2b-256 b15c8c9d221ee2b1cbbb59c8320f4e5ccad7ba0d566a863d5bdd7fefc623600c

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tvbk-0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 75.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e3a7b763084464a32d6125ae75a7bc12afc89b7f92c24550c91ff3bf9594a67c
MD5 3bc982a5cdeb3e94a17f04aef3d3d4c0
BLAKE2b-256 4c014af4976d94b0b9797b8a09855c06a0bf9d1df2bfa23f31011795f7333c79

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvbk-0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9332737f217390382bd750c1da1946ccae92ffde29f8e2eb771124220bb2ccc
MD5 6f7883983a565a5a854503b729d56244
BLAKE2b-256 be1eaee5041c952a28c00eff02d767afc10f70f544d2b5365e1654a7719cb947

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tvbk-0.5-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ad8691fbe3aad4cb69a7c241eed9ffee6ac2d0522c19e0f677ab3a3f0cee5ef
MD5 c1f34486dc839d5bd566081fa6effad8
BLAKE2b-256 309b529f31bb45da4d930aa54f8805cedf7d6605522a00a986e32c7d1e42755b

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tvbk-0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 75.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 67407c2ce4e24df3a57ff4ee072d8952f1504010482fb4efdec5f4552c46edb1
MD5 0a78ff359f7cf7b8686370fa6b05e6b7
BLAKE2b-256 3fd8578bb5b6f3a3fe519446b1f220b9d8dd5a89963bcc2d868d5bfab6861760

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvbk-0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d9fdb809d362710b092e2861a5f516c4f04bf23193dbc5845b82b97dd8f0869
MD5 9b95ce7efa6d83ccdc526a090ce64b76
BLAKE2b-256 10efa56ef2c4f55b991c49ea57ac718050cdc774596d93ccd763419e9be81687

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tvbk-0.5-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eddd87e21c10e344227d5ff4db07b35c370d4ae18900059e5f419381e935e5d0
MD5 fe7a62cbe0b6aed2be69f42e638f3757
BLAKE2b-256 6ee627c91eb231114de5b9a55d39538040e55f1f47a192f5ab9c3f85f8243b22

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tvbk-0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 75.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8dccf42d3e55f17a55d22489cfc6b7b6fb1241596a5acc3e5864a8ecfd4cfb61
MD5 68ac41486425185c85430a1c02f6e578
BLAKE2b-256 89046bafa0a988baecc6074df09f4573d83a7378029ce61779c4bd1c660ec192

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvbk-0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1a4d1be2b8e34a3bff439d11537a3882f09a157eb38f275d191c286cd2beb4
MD5 b3e17c71219604cb857ad623995496d8
BLAKE2b-256 a02c9725ae758037897b8352896e8283d3403078792bc13779cdcae2a11d82e1

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tvbk-0.5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 91.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f693944ce79f37b244ee75127418b619c87232c9678c8dfe1116421180c5c0f
MD5 559cbcf32f6bd5fb402b789cfdcb814d
BLAKE2b-256 3d6dbe085c9074eb1925a91e76a09342d59d5bf260a851ae7bdfdb2d98f07e01

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tvbk-0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 75.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e50c4ff9f3c8eb04d8f81ab8e16e51734e82561526f778bf7000fc3c6c7741f3
MD5 646f6d6ad5d481a0dbe01b30a8f81d7c
BLAKE2b-256 a0b15de99fccbd1d7b975561439efa3b1836f03c45bdbcca88f358f6c0994321

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tvbk-0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cdc75991644dfaede8226456efc58230e317f768ef56b1629f821b26b7f26d9
MD5 83d1ab6c1c33a4c316034e5019a1e8aa
BLAKE2b-256 b7b52c94b5ad911f93989ee333fbc351465e73df6260be86c71269c93d1d9d5b

See more details on using hashes here.

File details

Details for the file tvbk-0.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tvbk-0.5-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 90.2 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tvbk-0.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d2693aef123944f8bd9e0a21ba93a9fd1a2887dc3b3d0ca0f0968d825003da7
MD5 136139167f07ad3dfc37c5a1648115ac
BLAKE2b-256 05511388c5b1767c87a50960434cf0fd1c57ff8a093678ccd5ae9d31e00f7d41

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page