Skip to main content

twa is a Python wrapper for TheWorldAvatar project.

Project description

TheWorldAvatar (twa)

twa is a Python wrapper for TheWorldAvatar project. It expands on the TWA's Java functions with Python-native capabilities.

What is twa

The code is heavily based on the py4j package, which enables Python programs running in a Python interpreter to dynamically access Java objects in a Java Virtual Machine. It has a precedent python package, py4jps, which is now deprecated.

To get started, see the Quick start below or follow our tutorial.

Installation

To install twa, use the following command: pip install twa

You also need to install a Java Runtime Environment version 11:

  • [Recommended] If you are using Linux (or Windows Subsystem for Linux): apt install openjdk-11-jdk-headless
  • If you are using Windows machine: please follow the tutorial here

Quick start

from __future__ import annotations

###############################################
# Spin up a docker container for triple store #
###############################################
import docker
# Connect to Docker using the default socket or the configuration in your environment:
client = docker.from_env()

# Run Blazegraph container
# It returns a Container object that we will need later for stopping it
blazegraph = client.containers.run(
    'ghcr.io/cambridge-cares/blazegraph:1.1.0',
    ports={'8080/tcp': 9999}, # this binds the internal port 8080/tcp to the external port 9998
    detach=True # this runs the container in the background
)


#############################
# Instantiate sparql client #
#############################
from twa.kg_operations import PySparqlClient

# Define the SPARQL endpoint URL for the Blazegraph instance
sparql_endpoint = 'http://localhost:9999/blazegraph/namespace/kb/sparql'

# Create a SPARQL client to interact with the Blazegraph endpoint
sparql_client = PySparqlClient(sparql_endpoint, sparql_endpoint)


################################################
# Upload an ontology from an internet location #
################################################
# Example: Upload the PROV ontology from the web
prov_ttl = 'https://www.w3.org/ns/prov.ttl'
from rdflib import Graph

# Parse the ontology and upload it to the triple store
sparql_client.upload_graph(Graph().parse(prov_ttl))


########################
# Perform some queries #
########################
# Example query: Retrieve subclasses of prov:Agent
results = sparql_client.perform_query(
    """
    prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    prefix prov: <http://www.w3.org/ns/prov#>
    select *
    where {?agent rdfs:subClassOf prov:Agent}
    """
)
print(results)
# Expected output:
# > [{'agent': 'http://www.w3.org/ns/prov#Organization'},
# > {'agent': 'http://www.w3.org/ns/prov#Person'},
# > {'agent': 'http://www.w3.org/ns/prov#SoftwareAgent'}]


#########################
# Create a new ontology #
#########################
from twa.data_model.base_ontology import BaseOntology, BaseClass, TransitiveProperty, ObjectProperty, DatatypeProperty
from twa.data_model.iris import TWA_BASE_URL
from typing import ClassVar, Optional

# Define a minimal agent ontology
class MinimalAgentOntology(BaseOntology):
    base_url: ClassVar[str] = TWA_BASE_URL
    namespace: ClassVar[str] = 'mao'
    owl_versionInfo: ClassVar[str] = '0.0.1'
    rdfs_comment: ClassVar[str] = 'A minimal agent ontology'

# Define classes and properties for the ontology
class Agent(BaseClass):
    rdfs_isDefinedBy = MinimalAgentOntology
    name: Name[str]
    hasGoal: HasGoal[Goal]
    # Like native Pydantic, you can define optional fields (properties)
    actedOnBehalfOf: Optional[ActedOnBehalfOf[Agent]] = None

class Goal(BaseClass):
    rdfs_isDefinedBy = MinimalAgentOntology
    priority: Priority[str]

Name = DatatypeProperty.create_from_base('Name', MinimalAgentOntology, 1, 1)
"""
This is equivalent to:

class Name(DatatypeProperty):
    rdfs_isDefinedBy = MinimalAgentOntology
    owl_minQualifiedCardinality = 1
    owl_maxQualifiedCardinality = 1
"""
Priority = DatatypeProperty.create_from_base('Priority', MinimalAgentOntology, 1, 1)

HasGoal = ObjectProperty.create_from_base('HasGoal', MinimalAgentOntology)

# Another way of defining properties
class ActedOnBehalfOf(TransitiveProperty):
    rdfs_isDefinedBy = MinimalAgentOntology


#######################################
# Export the TBox to the triple store #
#######################################
# Export the ontology definition (TBox) to the triple store
MinimalAgentOntology.export_to_triple_store(sparql_client)


####################################
# Instantiate some objects as ABox #
####################################
# Create instances (ABox) of the ontology classes
machine_goal = Goal(
    rdfs_comment='continued survival',
    priority='High'
)
machine = Agent(
    name='machine',
    hasGoal=machine_goal
)
smith_goal = Goal(
    rdfs_comment='keep the system in order',
    priority='High'
)
agent_smith = Agent(
    name='smith',
    actedOnBehalfOf=machine,
    hasGoal=smith_goal
)

# Push the instances to the knowledge graph
agent_smith.push_to_kg(sparql_client, -1)


########################
# Perform some queries #
########################
# Retrieve all instances of the Agent class from the knowledge graph
agents = Agent.pull_all_instances_from_kg(sparql_client, -1)

# Once the objects are pulled, the developer can access information in a Python-native format
# Example: Print out the goals of each agent
for agent in agents:
    print(f'agent {agent.name} has goal: {agent.hasGoal}')
# Expected output:
# > agent {'smith'} has goal: {Goal(rdfs_comment='keep the system in order', ...)}
# > agent {'machine'} has goal: {Goal(rdfs_comment='continued survival', ...)}

Documentation

The documentation for twa can be found here.

Issues? Feature requests?

Submit an issue with a label python-wrapper.

Author

Citation

If you found this tool useful, please consider citing the following preprint:

@article{bai2025twa,
  title={{twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistry}},
  author={Bai, Jiaru and Rihm, Simon D and Kondinski, Aleksandar and Saluz, Fabio and Deng, Xinhong and Brownbridge, George and Mosbach, Sebastian and Akroyd, Jethro and Kraft, Markus},
  year={2025},
  note={Preprint at \url{https://como.ceb.cam.ac.uk/preprints/335/}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

twa-0.0.9.tar.gz (59.9 MB view details)

Uploaded Source

Built Distribution

twa-0.0.9-py3-none-any.whl (60.0 MB view details)

Uploaded Python 3

File details

Details for the file twa-0.0.9.tar.gz.

File metadata

  • Download URL: twa-0.0.9.tar.gz
  • Upload date:
  • Size: 59.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.4

File hashes

Hashes for twa-0.0.9.tar.gz
Algorithm Hash digest
SHA256 010493cb88a620236b376d497cc79c71aa0a062e59a880102aa5bd0029626c34
MD5 31e2fcb1a1f3ab0b8503107db058d0b5
BLAKE2b-256 6976274ea08c35f4d93e17ad8e814777c5105c3c9d212eec114e2774f50d5596

See more details on using hashes here.

File details

Details for the file twa-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: twa-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 60.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.4

File hashes

Hashes for twa-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 8be3d1ceef470efbb2ecb5a3ad584a17f0df9a263db2d22fb31fb2c74250fbbd
MD5 cfdf6dc6896c01b6e1964ced44c8e818
BLAKE2b-256 79bc3054e3a9bfc197768c6fdfa1b6074bd4c929d5bef90a09da7bf8ebad8eb0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page