Skip to main content

Twitter sentiment is a Python library leveraging NLP and the Twitter API to determine the emotion of a tweet

Project description

Python library to Explore Emotions Behind Tweets

twitter-sentiment is a Python library leveraging NLP algorithm and the Twitter API to classify the sentiment of a tweet.


Installing twitter-sentiment is simple, you just have to use pip. ::

pip install twitter-sentiment


Documentation is available at

twitter-sentiment in a nutshel

twitter-sentiment let you classify a tweet/list of tweets as positive (1) or negative (0). twitter-sentiment then calculate and returns the ration of positive tweets. To classify a tweet, twitter-sentiment levereage TextBlob Naive Byaise NLP library. More information can be find at

Continuous Integration

twitter-sentiment uses circleci as a continuous integration tool. Pushing a new git tag to the remote repositiory will trigger circleci workflow and:

  • validate the test in /test/
  • check for a match between the VERSION variable in the file and the git tag version. If all tests pass, the build will be automatically upload to the pypi server

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

twitter-sentiment- (5.8 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page