Skip to main content

Universally Unique Lexicographically Sortable Identifier

Project description

ulid

Build Status Build Status codecov Code Climate Issue Count

PyPI Version PyPI Versions

Updates

Documentation Status

Universally Unique Lexicographically Sortable Identifier in Python 3.

Status

This project is actively maintained.

Installation

To install ulid from pip:

    $ pip install ulid-py

To install ulid from source:

    $ git clone git@github.com:ahawker/ulid.git
    $ cd ulid && python setup.py install

Usage

Create a brand new ULID.

The timestamp value (48-bits) is from time.time() with millisecond precision.

The randomness value (80-bits) is from os.urandom().

>>> import ulid
>>> ulid.new()
<ULID('01BJQE4QTHMFP0S5J153XCFSP9')>

Create a new ULID from an existing 128-bit value, such as a UUID.

Supports ULID values as int, bytes, str, and UUID types.

>>> import ulid, uuid
>>> value = uuid.uuid4()
>>> value
UUID('0983d0a2-ff15-4d83-8f37-7dd945b5aa39')
>>> ulid.from_uuid(value)
<ULID('09GF8A5ZRN9P1RYDVXV52VBAHS')>

Create a new ULID from an existing timestamp value, such as a datetime object.

Supports timestamp values as int, float, str, bytes, bytearray, memoryview, datetime, Timestamp, and ULID types.

>>> import datetime, ulid
>>> ulid.from_timestamp(datetime.datetime(1999, 1, 1))
<ULID('00TM9HX0008S220A3PWSFVNFEH')>

Create a new ULID from an existing randomness value.

Supports randomness values as int, float, str, bytes, bytearray, memoryview, Randomness, and ULID types.

>>> import os, ulid
>>> randomness = os.urandom(10)
>>> ulid.from_randomness(randomness)
>>> <ULID('01BJQHX2XEDK0VN0GMYWT9JN8S')>

For cases when you don't necessarily control the data type (input from external system), you can use the parse method which will attempt to make the correct determination for you. Please note that this will be slightly slower than creating the instance from the respective from_* method as it needs to make a number of type/conditional checks.

Supports values as int, float, str, bytes, bytearray, memoryview, uuid.UUID, and ULID types.

>>> import ulid
>>> value = db.model.get_id()  ## Unsure about datatype -- Could be int, UUID, or string?
>>> ulid.parse(value)
>>> <ULID('0K0EDFETFM8SH912DBBD4ABXSZ')>

Once you have a ULID object, there are a number of ways to interact with it.

The timestamp method will give you a snapshot view of the first 48-bits of the ULID while the randomness method will give you a snapshot of the last 80-bits.

>>> import ulid
>>> u = ulid.new()
>>> u
<ULID('01BJQM7SC7D5VVTG3J68ABFQ3N')>
>>> u.timestamp()
<Timestamp('01BJQM7SC7')>
>>> u.randomness()
<Randomness('D5VVTG3J68ABFQ3N')>

The ULID, Timestamp, and Randomness classes all derive from the same base class, a MemoryView.

A MemoryView provides the str, int, and bytes methods for changing any values representation.

>>> import ulid
>>> u = ulid.new()
>>> u
<ULID('01BJQMF54D093DXEAWZ6JYRPAQ')>
>>> u.timestamp()
<Timestamp('01BJQMF54D')>
>>> u.timestamp().int
1497589322893
>>> u.timestamp().bytes
b'\x01\\\xafG\x94\x8d'
>>> u.timestamp().datetime
datetime.datetime(2017, 6, 16, 5, 2, 2, 893000)
>>> u.randomness().bytes
b'\x02F\xde\xb9\\\xf9\xa5\xecYW'
>>> u.bytes[6:] == u.randomness().bytes
True
>>> u.str
'01BJQMF54D093DXEAWZ6JYRPAQ'
>>> u.int
1810474399624548315999517391436142935

A MemoryView also provides rich comparison functionality.

>>> import datetime, time, ulid
>>> u1 = ulid.new()
>>> time.sleep(5)
>>> u2 = ulid.new()
>>> u1 < u2
True
>>> u3 = ulid.from_timestamp(datetime.datetime(2039, 1, 1))
>>> u1 < u2 < u3
True
>>> [u.timestamp().datetime for u in sorted([u2, u3, u1])]
[datetime.datetime(2017, 6, 16, 5, 7, 14, 847000), datetime.datetime(2017, 6, 16, 5, 7, 26, 775000), datetime.datetime(2039, 1, 1, 8, 0)]

Future Items

  • Collection of benchmarks to track performance.
  • Backport to Python 2.7?
  • See Github Issues for more!

Goals

A fast implementation in pure python of the spec with binary format support.

Contributing

If you would like to contribute, simply fork the repository, push your changes and send a pull request. Pull requests will be brought into the master branch via a rebase and fast-forward merge with the goal of having a linear branch history with no merge commits.

License

Apache 2.0

Why not UUID?

UUID can be suboptimal for many uses-cases because:

  • It isn't the most character efficient way of encoding 128 bits of randomness
  • UUID v1/v2 is impractical in many environments, as it requires access to a unique, stable MAC address
  • UUID v3/v5 requires a unique seed and produces randomly distributed IDs, which can cause fragmentation in many data structures
  • UUID v4 provides no other information than randomness which can cause fragmentation in many data structures

ULID provides:

  • 128-bit compatibility with UUID
  • 1.21e+24 unique ULIDs per millisecond
  • Lexicographically sortable!
  • Canonically encoded as a 26 character string, as opposed to the 36 character UUID
  • Uses Crockford's base32 for better efficiency and readability (5 bits per character)
  • Case insensitive
  • No special characters (URL safe)

Specification

Below is the current specification of ULID as implemented in this repository.

The binary format is implemented.

 01AN4Z07BY      79KA1307SR9X4MV3

|----------|    |----------------|
 Timestamp          Randomness
  10chars            16chars
   48bits             80bits

Components

Timestamp

  • 48 bit integer
  • UNIX-time in milliseconds
  • Won't run out of space till the year 10895 AD.

Randomness

  • 80 bits
  • Cryptographically secure source of randomness, if possible

Sorting

The left-most character must be sorted first, and the right-most character sorted last (lexical order). The default ASCII character set must be used. Within the same millisecond, sort order is not guaranteed

Encoding

Crockford's Base32 is used as shown. This alphabet excludes the letters I, L, O, and U to avoid confusion and abuse.

0123456789ABCDEFGHJKMNPQRSTVWXYZ

Binary Layout and Byte Order

The components are encoded as 16 octets. Each component is encoded with the Most Significant Byte first (network byte order).

0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      32_bit_uint_time_high                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     16_bit_uint_time_low      |       16_bit_uint_random      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       32_bit_uint_random                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       32_bit_uint_random                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

String Representation

ttttttttttrrrrrrrrrrrrrrrr

where
t is Timestamp
r is Randomness

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ulid-py, version 0.0.12
Filename, size File type Python version Upload date Hashes
Filename, size ulid_py-0.0.12-py2.py3-none-any.whl (16.1 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size ulid-py-0.0.12.tar.gz (18.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page