UNet Segmentation Metrics
Project description
UNet segmentation metrics
WORK IN PROGRESS
Simple Python 3 tools to assess the performance of UNet segmentation networks (or any other segmentation method) by comparing the prediction to a ground truth image.
Use it to calculate:
- Jaccard metric for object detection
- Intersection over Union (IoU) for object segmentation accuracy
- Localization (positional) error for estimating MOTP during tracking
- Pixel identity
TODO:
- Add strict matching with IoU threshold
- Add confusion matrix for multi-label/classification type tasks
Single image usage
import umetrix
from skimage.io import imread
y_true = imread('true.tif')
y_pred = imread('pred.tif')
# can now make the calculation strict, by only considering objects that have
# an IoU above a theshold as being true positives
result = umetrix.calculate(
y_true,
y_pred,
strict=True,
iou_threshold=0.5
)
print(result.results)
returns:
============================
Segmentation Metrics (n=1)
============================
Strict: True (IoU > 0.5)
n_true_labels: 354
n_pred_labels: 362
n_true_positives: 345
n_false_positives: 10
n_false_negatives: 0
IoU: 0.999
Jaccard: 0.972
pixel_identity: 0.998
localization_error: 0.010
Batch processing
import umetrix
# provide a list of file pairs ('true', 'prediction')
files = [
('true0.tif', 'pred0.tif'),
('true1.tif', 'pred1.tif'),
('true2.tif', 'pred2.tif')
]
batch_result = umetrix.batch(files)
Returns aggregate statistics over the batch. Jaccard index is calculated over all found objects, while other metrics are the average IoU etc.
Installation
- First clone the repo:
$ git clone https://github.com/quantumjot/unet_segmentation_metrics.git
- (Optional, but advised) Create a conda environment:
$ conda create -n umetrix python=3.9
$ conda activate umetrix
- Install the package
$ cd unet_segmentation_metrics
$ pip install .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file umetrix-0.2.0.tar.gz.
File metadata
- Download URL: umetrix-0.2.0.tar.gz
- Upload date:
- Size: 226.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b79e7812246e4a4c10cf13a77eeed607c8a52969cfb224d48c7a5f15e222234e
|
|
| MD5 |
405145268cc55181ba2da1b0f3f55fcd
|
|
| BLAKE2b-256 |
335504ddda3f0c8bb8a296680006c489dea57563ad1b723c460babb363f08b84
|
File details
Details for the file umetrix-0.2.0-py3-none-any.whl.
File metadata
- Download URL: umetrix-0.2.0-py3-none-any.whl
- Upload date:
- Size: 9.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0df225ea5a7ae0a77992b4234267299418d1bdacb76f492c84305e9e457d2de8
|
|
| MD5 |
a4621ed8daa75e9b64c394364f3b5ff1
|
|
| BLAKE2b-256 |
b00095c2ca9bd7de92486a6ab384f07548e783b4f9ab317413df25c5cd08a4d2
|