Skip to main content

fast bindings for the unqlite embedded database

Project description

Fast Python bindings for UnQLite, a lightweight, embedded NoSQL database and JSON document store.

Please note

Read the issue tracker for this database before considering using it. UnQLite has not seen any meaningful development since 2014. It is strongly recommended that you use Sqlite. Sqlite has robust support for json and is actively developed and maintained.

Features

UnQLite features:

  • Embedded, zero-conf database
  • Transactional (ACID)
  • Single file or in-memory database
  • Key/value store
  • Cursor support and linear record traversal
  • JSON document store
  • Thread-safe
  • Terabyte-sized databases

UnQLite-Python features:

  • Compiled library, extremely fast with minimal overhead.
  • Supports key/value operations, cursors, and transactions using Pythonic APIs.
  • Support for Jx9 scripting.
  • APIs for working with Jx9 JSON document collections.

Links:

Installation

You can install unqlite using pip.

pip install unqlite

Basic usage

Below is a sample interactive console session designed to show some of the basic features and functionality of the unqlite-python library. Also check out the full API documentation.

To begin, instantiate an UnQLite object. You can specify either the path to a database file, or use UnQLite as an in-memory database.

>>> from unqlite import UnQLite
>>> db = UnQLite()  # Create an in-memory database.

Key/value features

UnQLite can be used as a key/value store.

>>> db['foo'] = 'bar'  # Use as a key/value store.
>>> db['foo']  # The key/value store deals in byte-strings.
b'bar'

>>> for i in range(4):
...     db['k%s' % i] = str(i)
...

>>> 'k3' in db
True
>>> 'k4' in db
False
>>> del db['k3']

>>> db.append('k2', 'XXXX')
>>> db['k2']
b'2XXXX'

The database can also be iterated through directly. Note that keys are decoded while values are left as bytestrings.

>>> [item for item in db]
[('foo', b'bar'), ('k0', b'0'), ('k1', b'1'), ('k2', b'2XXXX')]

Cursors

For finer-grained record traversal, you can use cursors.

>>> with db.cursor() as cursor:
...     cursor.seek('k0')
...     for key, value in cursor:
...         print(key, '=>', value.decode('utf8'))
...
k0 => 0
k1 => 1
k2 => 2XXXX

>>> with db.cursor() as cursor:
...     cursor.seek('k2')
...     print(cursor.value())
...
b'2XXXX'

>>> with db.cursor() as cursor:
...     cursor.seek('k0')
...     print(list(cursor.fetch_until('k2', include_stop_key=False)))
...
[('k0', b'0'), ('k1', b'1')]

There are many different ways of interacting with cursors, which are described in the Cursor API documentation.

Document store features

In my opinion the most interesting feature of UnQLite is its JSON document store. The Jx9 scripting language is used to interact with the document store, and it is a wacky mix of PHP and maybe JavaScript (?).

Note: as of v0.8.0 the document store and collections APIs treat all strings as unicode.

Interacting with the document store basically consists of creating a Jx9 script (you might think of it as an imperative SQL query), compiling it, and then executing it.

>>> script = """
...     db_create('users');
...     db_store('users', $list_of_users);
...     $users_from_db = db_fetch_all('users');
... """

>>> list_of_users = [
...     {'username': 'Huey', 'age': 3},
...     {'username': 'Mickey', 'age': 5}
... ]

>>> with db.vm(script) as vm:
...     vm['list_of_users'] = list_of_users
...     vm.execute()
...     users_from_db = vm['users_from_db']
...
True

>>> users_from_db  # UnQLite assigns items in a collection an ID.
[{'username': 'Huey', 'age': 3, '__id': 0},
 {'username': 'Mickey', 'age': 5, '__id': 1}]

This is just a taste of what is possible with Jx9. In the near future I may add some wrappers around common Jx9 collection operations, but for now hopefully it is not too difficult to work with.

More information can be found in the VM API documentation.

Collections

To simplify working with JSON document collections, unqlite-python provides a light API for executing Jx9 queries on collections. A collection is an ordered list of JSON objects (records). Records can be appended or deleted, and in the next major release of UnQLite there will be support for updates as well.

To begin working with collections, you can use the factory method on UnQLite:

>>> users = db.collection('users')
>>> users.create()  # Create the collection if it does not exist.
>>> users.exists()
True

You can use the store() method to add one or many records. To add a single record just pass in a python dict. To add multiple records, pass in a list of dicts. Records can be fetched and deleted by ID.

By default, the ID of the last-stored record is returned. At the time of writing, IDs start at 0, so when inserting 3 records the last-id is 2:

>>> users.store([
...     {'name': 'Charlie', 'color': 'green'},
...     {'name': 'Huey', 'color': 'white'},
...     {'name': 'Mickey', 'color': 'black'}])
2
>>> users.store({'name': 'Leslie', 'color': 'also green'}, return_id=False)
True

>>> users.fetch(0)  # Fetch the first record.
{'__id': 0, 'color': 'green', 'name': 'Charlie'}

>>> users.delete(0)  # Delete the first record.
True
>>> users.delete(users.last_record_id())  # Delete the last record.
True

You can retrieve all records in the collection, or specify a filtering function. The filtering function will be registered as a foreign function with the Jx9 VM and called from the VM.

>>> users.all()
[{'__id': 1, 'color': 'white', 'name': 'Huey'},
 {'__id': 2, 'color': 'black', 'name': 'Mickey'}]

>>> users.filter(lambda obj: obj['name'].startswith('H'))
[{'__id': 1, 'color': 'white', 'name': 'Huey'}]

Transactions

UnQLite supports transactions for file-backed databases (since transactions occur at the filesystem level, they have no effect on in-memory databases).

The easiest way to create a transaction is with the context manager:

>>> db = UnQLite('/tmp/test.db')
>>> with db.transaction():
...     db['k1'] = 'v1'
...     db['k2'] = 'v2'
...
>>> db['k1']
b'v1'

You can also use the transaction decorator which will wrap a function call in a transaction and commit upon successful execution (rolling back if an exception occurs).

>>> @db.commit_on_success
... def save_value(key, value, exc=False):
...     db[key] = value
...     if exc:
...         raise Exception('uh-oh')
...
>>> save_value('k3', 'v3')
>>> save_value('k3', 'vx', True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "unqlite/core.py", line 312, in wrapper
    return fn(*args, **kwargs)
  File "<stdin>", line 5, in save_value
Exception: uh-oh
>>> db['k3']
b'v3'

For finer-grained control you can call db.begin(), db.rollback() and db.commit() manually:

>>> db.begin()
>>> db['k3'] = 'v3-xx'
>>> db.commit()
True
>>> db['k3']
b'v3-xx'

This code is based in part on buaabyl's pyUnQLite.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

unqlite-1.0.0.tar.gz (440.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

unqlite-1.0.0-cp314-cp314t-win_amd64.whl (356.7 kB view details)

Uploaded CPython 3.14tWindows x86-64

unqlite-1.0.0-cp314-cp314t-win32.whl (270.8 kB view details)

Uploaded CPython 3.14tWindows x86

unqlite-1.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp314-cp314t-macosx_11_0_arm64.whl (355.5 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

unqlite-1.0.0-cp314-cp314-win_amd64.whl (327.1 kB view details)

Uploaded CPython 3.14Windows x86-64

unqlite-1.0.0-cp314-cp314-win32.whl (248.4 kB view details)

Uploaded CPython 3.14Windows x86

unqlite-1.0.0-cp314-cp314-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp314-cp314-macosx_11_0_arm64.whl (344.3 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

unqlite-1.0.0-cp313-cp313-win_amd64.whl (315.9 kB view details)

Uploaded CPython 3.13Windows x86-64

unqlite-1.0.0-cp313-cp313-win32.whl (241.5 kB view details)

Uploaded CPython 3.13Windows x86

unqlite-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp313-cp313-macosx_11_0_arm64.whl (343.6 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

unqlite-1.0.0-cp312-cp312-win_amd64.whl (315.9 kB view details)

Uploaded CPython 3.12Windows x86-64

unqlite-1.0.0-cp312-cp312-win32.whl (241.6 kB view details)

Uploaded CPython 3.12Windows x86

unqlite-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp312-cp312-macosx_11_0_arm64.whl (344.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

unqlite-1.0.0-cp311-cp311-win_amd64.whl (321.9 kB view details)

Uploaded CPython 3.11Windows x86-64

unqlite-1.0.0-cp311-cp311-win32.whl (243.8 kB view details)

Uploaded CPython 3.11Windows x86

unqlite-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (346.2 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

unqlite-1.0.0-cp310-cp310-win_amd64.whl (320.1 kB view details)

Uploaded CPython 3.10Windows x86-64

unqlite-1.0.0-cp310-cp310-win32.whl (243.6 kB view details)

Uploaded CPython 3.10Windows x86

unqlite-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (346.6 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

unqlite-1.0.0-cp39-cp39-win_amd64.whl (320.7 kB view details)

Uploaded CPython 3.9Windows x86-64

unqlite-1.0.0-cp39-cp39-win32.whl (243.9 kB view details)

Uploaded CPython 3.9Windows x86

unqlite-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp39-cp39-macosx_11_0_arm64.whl (347.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

unqlite-1.0.0-cp38-cp38-win_amd64.whl (322.3 kB view details)

Uploaded CPython 3.8Windows x86-64

unqlite-1.0.0-cp38-cp38-win32.whl (246.5 kB view details)

Uploaded CPython 3.8Windows x86

unqlite-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

unqlite-1.0.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

unqlite-1.0.0-cp38-cp38-macosx_11_0_arm64.whl (351.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

File details

Details for the file unqlite-1.0.0.tar.gz.

File metadata

  • Download URL: unqlite-1.0.0.tar.gz
  • Upload date:
  • Size: 440.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0.tar.gz
Algorithm Hash digest
SHA256 b1c2865ab5d04dbcbba71a7dce5bd8d6448f50c292ae3fbf918c8630f25899f5
MD5 d2e98ca76a0d3eca1d45d2986743bf85
BLAKE2b-256 cae397a096a301b38b191e52941f0286b3b4e8ce0402117cf2299bb8d06820a0

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 356.7 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 1596b57d702f0c535f4a5afc10ea045786af7a896e602b0d0758df8eee7b9c69
MD5 fbe29413f768325eba81a421046b4323
BLAKE2b-256 2cbece7f697f167c0cba9969c36a3c8655d20d74acc89ac8c7e963b0e3af141b

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314t-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 270.8 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 9677e2862cba9a8e32fe2dd940a4599fc869fa70ac236aeedfeef1f478bcac6e
MD5 1583a3181a1b067e756926449234179b
BLAKE2b-256 f6828f6d5c8db36941d6b36e08a451284c5b68038ef669021a09b88fedffc0ae

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6c52651736e6644c8e792b9de5937dfb133545b4b78649a82fbed4fbe3c55257
MD5 322457cfec602a1bb8c36380d7ff7c86
BLAKE2b-256 093daad272dadd20912324ddf60964fea2ae94134314e0bc5f2b9576eec3abc7

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fc0f9b7dcc19afcccb924544e0a2f96344420a0da5cc633c406f96bd20e3039e
MD5 aa0854c12b8b3f65d0ac5d5c9f6bfcf3
BLAKE2b-256 d39460382deb85ec4f9eba748984589d9a0f6b62f0c4957d30be54dd79f7c89f

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8206673b167a8602592e31172eff6100d28147d83f16251ee4dcf9aa99a750a
MD5 41eac2ac1e4763ada06edeb7ddfc160c
BLAKE2b-256 c5321545f3beed2cbbb3acc9e6f01d100e40881da0ee15b617399062138d438a

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 327.1 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 ded9afd604668a10f98a64d13d9d5d4e86b7c22da6c1a4dad1601309fdfda553
MD5 3d4786b1922c0e583219e9504e32bd3c
BLAKE2b-256 bca0ae56c9a565162e13e4c02166ea100ef52ff9f1e465575a4fe95255e9dd79

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp314-cp314-win32.whl
  • Upload date:
  • Size: 248.4 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 b0f07e1e41ed597a52d24bb1d753b22411904340ae25e4ffe626e9c658a2d3aa
MD5 08298388d3f718aba9fe3ae9d429d6f7
BLAKE2b-256 f8ec7c44ee4c2fd773d54480b4b854cc7806db8bf875b7343e5b98ddab62776f

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2fa1d56bbdc7d6a7873788de3065de2e16341d6fbff07a64679509d696d88468
MD5 ced1328463c7d1b1066572176439b2cb
BLAKE2b-256 ec73626a6168893edb3c4c27936a1de7782a7a4a5b82c085a8899d09d009ea84

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7ccdaae6b457cabd00b099acec6d8ffc8ad79039be7e6f24054df78ed8e2cc45
MD5 d99334cf6faca92b380c683a000df836
BLAKE2b-256 6a510965120ae9fcff44e0de3703744246e398a199d2e904ef4281fa99b5e18b

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae56cc34c55ee00025a77d7c9b5605ba0c21c6b59ba0eb952f90e1382f4d8c29
MD5 4f74227903d0df5b25e9f5976cee2532
BLAKE2b-256 26806e977bcbd897880a1db0f54bd12bf43e8ee61f0d08a31ed310e64b0190bd

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 315.9 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4f418f367f039365fe9fb2f15745adf143bf4ceb6b21915b217c691bc025e57f
MD5 3a3a6d53ec123f868dc17d36c958e3d3
BLAKE2b-256 f10ce37a56b0e4760386da88f0ef41acaf4d5231389cbe2c61a4ef3b53913931

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 241.5 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 dea3b8135395121fca3c9c38206662a438f33826b4c50dc9421cbc2dca0d4f23
MD5 03fa4fe73dafc857decd908078f19f41
BLAKE2b-256 174af9768b8ce71a14764407bb900aed8ae32955522336a6efa80a43b307bff0

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 62849d2e5d6457eb1c1a73c4d05bc5079412b087d184b0d69964d6c9e8afe405
MD5 d39a4236176b50ed80e8f4e748aaefac
BLAKE2b-256 c3ca9a3d29b2a53b33fac20b46d6470ae94a47f261e0a595e7a6adcc04b1b9d6

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e8d276c2299ed2cd45a2a37da6932a91fed04b678e6b4261b4b30d00261634a7
MD5 db1be379b847f4869755874428ebe644
BLAKE2b-256 6718af5396e5be5d016730fe2629d79cf6ca1ec9533ed1280e128ab77571acc3

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e4b1c3acb2dbbde5c990dde243e96f368546cade787085bfe19ff6f410b9352
MD5 95a26ab62285a2105a240095e79ad75d
BLAKE2b-256 4d2c161227f94bd19613c606e98be709399155387d84bd3b1096dba1394f35bd

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 315.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f875b75b63830f0df626d8713c982ef6edf6efca3a18949a7cf75d82e4e8dbdf
MD5 3045375800bb832acf24bd6e82d3884d
BLAKE2b-256 07f5464378b30c8c0e34a6589aba6e5bb746cf32388c94b6c6bcadcd6fd9eece

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 241.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e243a0d6c09c93f8d007ea316593f8c42cc094ecfc5ef51efb0eedf0e8e00792
MD5 f9ad2b154a27d5045749093071a2c8e8
BLAKE2b-256 a07c62929cb8230668b2097e0042a71f804456db9175723a107005fc6e8ddd06

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cc80fcd995ca85cbe2899bc72b4106139f5f78a4cc58acf2fd2206923ab3d000
MD5 3e7d4e3c62a5cba0e6506e4468fca625
BLAKE2b-256 3c9f964a93ab43e81427a2f485b6fae91fb04ce3dad14e34b731a13ff0e16243

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f71cbe56beaf3ea8e5b64df3396796daa4d9ee2a94ab5edf0c343aca72767c88
MD5 0ab7489f87e00a6d0b3c4a85dfb118b7
BLAKE2b-256 7c76dc0896907597b30c4dca9a140e15f3028548fa09390f79e766c6e05c18aa

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20efe283a09fc5235bdec065ff2d43025d31c3e571254627a78d9866bb43e70b
MD5 0d7563e2314b9e9d4f0fda0602e2ab74
BLAKE2b-256 c2c3e2307286327459abf74a7c3e76b6fff6ebf8b481a23979b5aacc918759ab

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 321.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 af31e7b4e775d90ea30fac544041d9ad28387f53ad1f6f61d30e27a0ca3ef351
MD5 eb73d3adb04752a1fb7c40a1d84392e7
BLAKE2b-256 d35d08cf0ada0baac9f60929d98627062ba9beb1d42d4b493720752c1e70d7cb

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 243.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a0df7b6b331db1f4261650ffe81547d8798f4da8a6561b1de91afde7ab3afc4a
MD5 3bbeca8615962830b3aa811c12f39197
BLAKE2b-256 b735d21c307fe11e269f22f4558e0f63f695d0fbc9dd9119918ae8fa21c3bfe4

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ccfff67e37868c1de130dffbf98cfc53546fc9131692ffe2f0065c3f87c304de
MD5 8ecf5889d447dbdf0ea943564869c6fb
BLAKE2b-256 fd52ccc765a1efeebacd560f1f39698e193e770e819dd6831e352a07d4389df0

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 49f98862c26898ea8491370fcd0df57cc3cb40b018d360d53ce7c2eee89f3707
MD5 69e12ebf68b114ecf2702e38b71e4579
BLAKE2b-256 25030bea8265d2576b8b7dda1b227132fe577b9e3a22a0be9969b0b300686b50

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ccd593b461d49c10e0e6dc6978a296636e00d75f63ad8b88b6fa1e2b7fb6054
MD5 2d10b57c41eff9b9c98a60d6f331c2bd
BLAKE2b-256 67af0f9e943cd91bba6c21100473ea761fd8d7c6d7e3eb53d2d08afa644a7615

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 320.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0d2f34a247a934d20725b5c7fed7c56ba9f4343899a89ef28022670c579f904d
MD5 b32380efcf24955d25b67e08f92965ec
BLAKE2b-256 3c8adb161dcd6ad4435ddce4aaace21c941e27c7be7ce1dcd6439f70b15d8a37

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 243.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0a7b72656eb7208f7902125e6be69ed6260620e4300de850938d5da5dc844517
MD5 571c994c20a03817caae603b97126c01
BLAKE2b-256 4697e9e28ff0c0afef599a301daeca62652f5ffb2ccb0baecd79942e7a6c82e8

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f200c8f2954be5aef0f76a2a62e05676762e9a364972c62076440622ff731523
MD5 db45de65f97c3d82573a6ac3884d9ca6
BLAKE2b-256 9d86a6334d07ab3366a3addf5d4ea5997c38bef734230b3ac18272d0cd808250

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ccf803b25730c9ea0300524b2fdfd47c36d7d95041b493e9d54c69b42c4c5d26
MD5 c8b6e502db93d564e122cfba4b9752d7
BLAKE2b-256 baeadd655f9511f982c57a70cbef88596bef1e706938882df05011176680a856

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71fa43eab7ce7f6ee632f016a75b82c2f9cbd17a78cbdbdbb75a8ffdb0a006e3
MD5 174ad8ae680420d019b58bc74806a3b8
BLAKE2b-256 50c6f576f047358c4c538837961405db346919cc8191abdd0ba3a28b92c4be91

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 320.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5a2851a079080c221c1f0e200efb1a9d0feaa6200e2520dc18397e55ee218dc
MD5 5d55f49d8a528cd2b6c2de1032ee8033
BLAKE2b-256 73082d0c399d185cac8de231b2127264fad220614634d791e5abcf6c594c13ca

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 243.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7ca1f4c89179f72d7b21abad1ea8055505dd42e97df01515764f21946080405b
MD5 ff7210b899c96ec587e08a8e886c2055
BLAKE2b-256 2caa9f2b094bd539d88fa0dac079ff58da1e1cb72f9647958f6a62f9effea451

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9b1566e65798373592a35e7fa564cb94c7ebc94062b75787192662ebdf408a39
MD5 0aa5e805a48af55d6cce4c7418e2e682
BLAKE2b-256 b876b567b99f470403309abe82a9f6a7dd46d16c9b90897a25dd309bb8387957

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f655d4248490b07dd83e411815dddc0de6f3a8a77bd26b83ffb1e13c542d2c47
MD5 369bb7f5baa5821d1352144651f346b5
BLAKE2b-256 2759421f9c6ebc48068a1b7cf1f7f4538637526da2938ed05da1de677aa5ed4c

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b55ff5306607ce626319e01a6344b772e08943f0273294d3c84475de6251aa96
MD5 fec8e3a96321e4dc8814ee0734b54fcd
BLAKE2b-256 8f4d9c66d475a9d999c8ed82be7d119e9c9a54d219b5bca6e053876e4b667371

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 322.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e2bcc3a6e8aaf9c4d93a3250ec182ceabbb6935e5c76723b2cfdc777278c065f
MD5 5acd0467ff80e9f07988eed9a062f5f5
BLAKE2b-256 eae58dbb35a7204f80ac53b9e2917c3a6b824a47ed442fdde8b493c1a3ceacb4

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: unqlite-1.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 246.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for unqlite-1.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2e510e3da5f1a97e57599048912e841a37c11591dd2e226ef7ca40a5900d3f20
MD5 a674413f9089468164e5d5a128ba429e
BLAKE2b-256 6fe9ffa0d0ca294b1715b8d7f379ec96193f77c151a73981422a7ab047e399ce

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b60e393fdb7e503fdb6a39a76d830717d6c981387ad401d7c6b506298e0b3f4f
MD5 6c8738b0380f4de9b65d7d5a694bcb85
BLAKE2b-256 f9a9b5fe146c81b6b90e025d857e374c64cf7f7722429e08c55501d5564a3555

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 98d54757e84e28ef571bb82add1bbed1e06d30611ace274b0e9c91c61c9f1f39
MD5 9879cb9745e87129c03408363f5b78cd
BLAKE2b-256 87d395b634bcca4aa0feaa28176635cd80f06a16c00fb7a563e39edb44814b00

See more details on using hashes here.

File details

Details for the file unqlite-1.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for unqlite-1.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90c6a0e8dba023e4552e6b783dcfce7f5ad62944a4d77e5f24e3c428fd276316
MD5 5ceba3ba23ac8c8a4fe664d4f14c4f17
BLAKE2b-256 8ee79553d2e47e068db98b93145de01fe9bd4b53107a172e5b14c4e03af06ed6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page