Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.1},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.1-cp312-cp312-win_arm64.whl (265.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.1-cp312-cp312-win_amd64.whl (280.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp312-cp312-macosx_11_0_arm64.whl (400.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.1-cp312-cp312-macosx_10_9_x86_64.whl (418.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.1-cp312-cp312-macosx_10_9_universal2.whl (783.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.1-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.1-cp311-cp311-win_amd64.whl (278.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp311-cp311-macosx_11_0_arm64.whl (401.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl (415.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.1-cp311-cp311-macosx_10_9_universal2.whl (781.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.1-cp310-cp310-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.1-cp310-cp310-win_amd64.whl (277.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp310-cp310-macosx_11_0_arm64.whl (399.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.1-cp310-cp310-macosx_10_9_universal2.whl (777.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.1-cp39-cp39-win_arm64.whl (263.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.1-cp39-cp39-win_amd64.whl (273.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.1-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp39-cp39-macosx_11_0_arm64.whl (399.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl (414.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.1-cp39-cp39-macosx_10_9_universal2.whl (778.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.1-cp38-cp38-win_amd64.whl (278.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.1-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp38-cp38-macosx_11_0_arm64.whl (399.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.1-cp38-cp38-macosx_10_9_universal2.whl (777.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.1-cp37-cp37m-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.1-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.1-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.1-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.1-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl (408.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.1-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 265.0 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 c67532a0fcfc46a91c3a27d06cd5cead763fc206a10e38e5525a06029e92a84a
MD5 54f6e00bd851a916d5dacc9635735c0d
BLAKE2b-256 16f5f38041226c3edf36d82a2f09b20090299300bff67dd61cf227ba74cbe0ca

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9fff806786b86b3f9e0cf1a100b18cc3892ceae4d56bc9e58db123249d6d2bb2
MD5 15f6b47aa2dad4b250cc7b489230722e
BLAKE2b-256 2355b014dcee11b5a67451b46e7a60257a8de792f78eef4b922e8b2c6068de93

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9eddcc3d6664f22c75ec0d613010ae6c27d4b114db25160da7895418f6f76d69
MD5 f39fa488fb5d83d920b4051961c55dcd
BLAKE2b-256 0c24c3a1690242ba33224fd0564e60a9b2bc1f067d8223f8ad916c77ba393353

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5df2a67af447a04a699a085bb1b833337c8888af222b5ca1a55751cadcf5bb89
MD5 c431276aa0455eb833106a67392d1eb1
BLAKE2b-256 9435529e7bc5bdb9ac624f219ef9c5382ced897b2b47b02dc1932e498a463c4f

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 905163ae96a79527196b6419a47d2349ece2c351e88e44c059c46364a263311b
MD5 f937b7e15df23a0adbff227c59e004a1
BLAKE2b-256 18aea0ae0b213d7537f128f2eb42038f6f0e70da4ff1c69a1596e74abd55c781

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ebab56018cfe4e37dd674e895d6a5961802a77bf4fc2fcc167d94eec4ff7a77
MD5 629efa63a5858e4c9ff4dd10e0267d2b
BLAKE2b-256 928c25b8ee09f0678bc88415f45970c06695fcaf69628ab0e9cb5dc700edaf18

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 613cc8e983bda32121a2efe96e0e4614094a78c1b324a1b362eab9c6ffe99cf3
MD5 e515dbdc39f6c01d3208d2ca0f69001a
BLAKE2b-256 c7403f0d2d905437699437ddea6aa73a78ceaa8a90c1b3b1eaa941f8ae7e9d5e

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 401e8a4e53297b35c4e4589494356fb8a51342d09dc216a8716685738216e4b4
MD5 1f0a75f8bb1cdc49f0afa066689d8082
BLAKE2b-256 ffc0c3e7467a54063e6ef3a6a1e543012c8b4edcb654d1d256470962649f0441

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3edfe96746d856f402bcbff9baeae10f7f776f7b0f73cf6c2c751deca6c2e157
MD5 5bc4a9f980f7f8f71c07773b134f06a6
BLAKE2b-256 6a31002a8052fc2624f5a31bf862230ba8073d22b5fe055f10ce1e684fc12a6f

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 506eb21f9a2dfd3b491b8f17f66fc5f17abafa38bf13a2642a65b22fe7271b5f
MD5 6dcced4ca9a3576df2ed088520935085
BLAKE2b-256 605132db942da03b372cbc181d30cc9c3ad924c5eb11cfd0e552cf6def75ad85

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0328be059c5f8d5cdb301f344cf2d4c427efcdeac95ee076c75624cce6301a2a
MD5 6bb4acd4935ab28cd7baaad38c4fdbcb
BLAKE2b-256 07a90cb6045fec4337145fc8d522ff0a76d068c74d9aeec3645d2f5d0ee20029

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bedee5cdef9b46473bc8720081d70982b2c9d05b81b7c61fb57c41214fa955bb
MD5 2873e37062b8a996b5556852549af964
BLAKE2b-256 59fa384c0f9cd723cdfb4789015feac26fbd2058cdafd5a31cdf7a25a433afa7

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1ddf4ba85cd31e83c28a8b5023e2861568ba7cfd86fc6051c943d642dc9bc877
MD5 d8deb0db7fbc4f8bf73f97be9dbb4481
BLAKE2b-256 792e98a88f3788fcc7b857995dc0a257d13fa5abd73dce2533c4c2194ffb0f91

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 133fd7fca3dd0e32162bfa49df751126e416ad62ff0c80e9a03c1580323c1941
MD5 b60ba68aac906641dbe78b301bb66995
BLAKE2b-256 62327c467c74daee3f8c108159191f3168e3c33ee00f817c7478d1bf671ba870

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 24f4e32cbc86cabad0dd404eee54cf71bc9d1e2eb2fa46bd5059cbba662eb820
MD5 882d53b5084804324dedac2919466d1e
BLAKE2b-256 35d581864a59b56224e40a1112630cff9de01b2fa62b66bb47234f8b436fea40

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af49199b5a01a169ffbfefdcd8dc5229ae551f33d8f62867693fc2e56f0c98a1
MD5 61d5b26f0deba3b92df8008b33f0056b
BLAKE2b-256 3f120a6642614fd007cf8b649493ca47609eb5587b82ec1f2ce9213719b8e328

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fef4e32f7144ddeb968fb132c8c9051486cc2a4bafb3fe06d8c35f969814ddef
MD5 f9dd197057bfa29e03730178f0b6a611
BLAKE2b-256 e3f22b6312f8c742375d675f5b7da646a8e523393ce2a315063206cc2da33f8a

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 322edad5571cc8c1193b41de0f39dcdb2febbc2c42951d91a23dbff825cb8d23
MD5 5e3ff4177bdb83fb15c58f122c5717fa
BLAKE2b-256 bb07ae257714004a65596ab1d862879be7ccad9d823ac29a2f4edeec0056f373

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 a43f1cd813698f00228570d257dfc5749fbbc8546ea7227833be165ec911ba37
MD5 f2c1f027ab3bb7702ba78906176dd904
BLAKE2b-256 2cc30676198eb44f65be23954c5bfb7dfd3fb9d2ed290e4d9b31625a2c684c44

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d96c32c2da7dcf25e3ffcb2a946362a8aed97b86ac2e07f0b6361122ee94bfa7
MD5 028bc98de1d7e0e1e5b058b703f60998
BLAKE2b-256 fb5e6cff6c58ac656fe8b50167a21cbaf08ccfb9b6a2bfece6a616670abb0ae8

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 cec005cc0b794f7d0ba31e9fbed2dd904cd7c857b1c1b3967dd6115522ea4788
MD5 3e77abfcf44fea505474a3bab0e84e94
BLAKE2b-256 67788cac0f941fc9355e150408ebd0a2f7ab3fd1a14db3c5f8f99f7d18788fbb

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e1a0698cc5074e1df1ba841ccca237247052d62bb3084225fdc307a1a8656dff
MD5 f0e4e3fa2c0466683ceae152d9a33b51
BLAKE2b-256 511ba60fcb64da05b4bb5004c311d3d34751f34d6f149b3ff08f8a777e65c30e

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5ec517358a19b1fadab0963745597390cec098feafca4c904adde2327d60ab67
MD5 5521e45e446d0d68a0e7e472bbb0be61
BLAKE2b-256 878d348fdedb8cda8d6d91ff8ae3c157913d3400a49040ef2b069c48bf13cabd

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5b520519fba5b943dfdaba7140120fbbfaad67fc64d2b90917b506786dbab235
MD5 5330a2d3115876cb66c71ac094d31e1c
BLAKE2b-256 cb4d837bbd8b2e26d91d5bf679c03a0cf5ecbc1b98b10da13542ac1e9128b07b

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b261cf1d1ad51e7aed807aa7fab267f0dae9fa303f1622b316ea7f6aa91b83c
MD5 453f42fbd375f4336ed13fb1e9c77faf
BLAKE2b-256 3b2f5848e531fbcdd5c13e0bc690a8d97dd98f7658ebe5bc2390b44263a50d5b

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8f5ffecf52e228ee3f5bec3490d203398c3e40fd2a4eafa8911add9a3d19413
MD5 70764cfdfabb340d9b30360f03db246e
BLAKE2b-256 e880b81965374e4848e79e7eeded236cebadc9d1a0c77ea04466f3428a0339ac

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 65a3c82651ac07b283650a49820578ed6943d69ca48112d0d0322b39587c3e65
MD5 91e8830f25c234288e17c113910cf5d7
BLAKE2b-256 a86dfffc71799c73021a7a5e5bd67b329ab17f620b4aedce9e23bd75be3973db

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 263.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 4f21809a58c7d2be3a4a8cf2b56f7302f8d52322b332d9f407d340be28528f38
MD5 ecdc407e9d04a6d9a79cdf49cb4c0cdb
BLAKE2b-256 69c6fca801868bb0170a7348b56fc0bd46a18926ce3dbbbbb3e94cef2714f981

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bcfd3cdad011d2f0dc2a41d3ac7190baedc6105f0dbb24e7c3207ac2f7df8002
MD5 2a08ae646aaf15b94f5324c14668b51b
BLAKE2b-256 a14d6ba80d2507e6dc8c7fe90794a225e6244789c07fd4218d39de0e091c53f7

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 78b838c99f58262823e81626bacadcbe08b6e9ffd1b1828a3f51bbdd87c99f20
MD5 709eb2610bd7dcaa5b42ce54df10333f
BLAKE2b-256 79d9fa23028568c83e17df226004055d6b9cd64ac369b1f3fda71b2c4e9bf043

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0bc253230f9e98c144fbaa5e8fef7682aee68d9562279cf342003388d62cc5b2
MD5 69497c6958817762d1fc9ff5052dcadf
BLAKE2b-256 a34c40692cc45622a944ff59adc4d87cf3d415eb3b5d98ebbee4348d9fc01658

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 43f66d837ace3a3b8f2f520860348b99668368ee2db777da36d11621e3f9ee13
MD5 9e872972fa7d85696e33cddb81590e3b
BLAKE2b-256 21615ad8d47490d9b739623e06dc3cd0e2e45a9c0adf26b941841cae5630e4f5

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 efcc9de8a94d1039e0348688130252785a7bebaa17e038025e53f5662c27a74d
MD5 b0c568ae2872a86d2b33634422dceb30
BLAKE2b-256 ae99cca8e14bd4efaa0a819a0a20792608ddb6d37a8df65647701a0aa9c8abf1

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f23ace8145b1f01e4e99a503bfb994150403fd83d8ea5fb44e10ca0e06325806
MD5 96d34c667a2d824902430c2da1288408
BLAKE2b-256 7f42929651b14fc5210bd5babfc145d0be0f45714fab385ecebcad21b8d471e8

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6f4dcc5bf8a4626860ee6a35e392bc342b0ea58cff23697991d869888d48dda
MD5 b5bd3137f1752eda9d815171d3281dde
BLAKE2b-256 ad5e344c08c9a4f7ac910b38fbb8c5c2cad441cd59aaf2466d032c7dd3d377d9

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e7c640f2bab90b567abc9327977c85512f8800fdaecdeaf771b4071df914036b
MD5 eb9dc3adc60a9a58d6e868de8c02d820
BLAKE2b-256 22f39bd42469914c49650ffcc14e97f2860eca329bcc578b2fd9cdee6cce567f

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 38fe1ebb343aec3309d3972318af6332dedd1fc516759a5c951964a79f682fe4
MD5 163dd431571b4d64fa0c2113ebdf9a38
BLAKE2b-256 fc2ce87a41b5f32a7ff65e85894680dd87cef66a14a2ddc5e13d5556b5b7bdd3

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 68e762d7d93c053a118b28f61a7c52209d043d424e2147785d57b943a59c3818
MD5 2883364c61ddff3c0ff2500ec5ea1fe3
BLAKE2b-256 f4a5c7f755c62382c33fe51fb6a154c322f2588609cf46e24923b49ad4e8051a

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 33813dabe9ed77f67e9f58c0d3a426466f10ebff7ad58458609cce9b92b896cd
MD5 adef40bc0cddb48671c18ebbe617ca97
BLAKE2b-256 0f85a80aef768bdb0f1a776ff065d34e804e172b29d65a6451bded86f9058e21

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6eda66de3830fae2c18e2a09279b1e63986c76645462a57b4f0a090b71ca0958
MD5 bea1494cb177474ecfa0a7d96676217a
BLAKE2b-256 33a998a6a9384bb7e82362cce3a6b70a24bdacd46970fd09badc12e92fdbc3c1

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aad937bac969e6de4dda7e320f0ecbb92fd09ee4c82025d283b7f4208c8a85dd
MD5 a0285f08e5674ebac1b3ac06b5b8e5ba
BLAKE2b-256 fff16e0b81ac5d7c6123e7f146c0c8a4bb16d7aa59742730e760302289a5aa38

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ca7b2c0b0743700e16fd7ff8b363f9db9dadb35359dd061191e2884966e589e
MD5 7bfd9952efc45ab4362b5def1516bb4e
BLAKE2b-256 4702fca118c06c9ff42a3d277ed034499abde25a4d07e0f0f7fd4a271373b8af

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7b6f8264a794844122e5521a754044ebb57aa53f5996d83ec908d7619de9d5c
MD5 eac001333efddd70280606fb3c0c5af4
BLAKE2b-256 864e6dd63b7ec350a6994c8f6c37ab0765330b54e2a363759e7bf4596d9a7719

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 48bcd7ccb3989d5ebe91b258bc0dc294c090f31cb57cc2db08563789d2017fa0
MD5 bb545e17cc8162adef9209c5d6563181
BLAKE2b-256 13692f5e39c084a55a86b2ba10b1644d91cfe773b9ec604b791304c3df0b2fe8

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 833e0a20b5761bf710e05d64f9be113732df7339ec67db8fd6d74687244647a0
MD5 c1f7f736cf5a70752b353f3ace91638d
BLAKE2b-256 bb851356e19462fce321f50666a4f4704c927ed9a777d49f376067d843a263d1

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1d8828d5f3d964e71c6e8f87420535f34961390ba6b661d1b5c2b32801a66c3b
MD5 868842a5cd00d2af363cf5a50a39f742
BLAKE2b-256 a30d6fcfaec2ab48a3b30897f867909764cba6a41dc8a5ae6698287454742fa7

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2d0e79382851f818577d504686c3a7003c65aecc17279b24d3657d39c5276d66
MD5 b29244742998b7be16f85765e3088485
BLAKE2b-256 34a5b2204b6b0989d48621968c0fd7eb5726e2914c3c7dbd5b4b265786c79725

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d9edc5c6f14d3f74c347e236f5ffe154148de13e5abe1230457cc827a45d5a05
MD5 5e72f63cb076d9bb897cb0db3b42a373
BLAKE2b-256 6d09601c808dac35da4fb9eabd511a3e3c28ac82f05f4bd0c96987f112676d81

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5b4751783733b54d733180ad90a13ec05926606217df4ae1648b439db0151325
MD5 f8cb873d81014986a2af9024b97d37d4
BLAKE2b-256 3f19f5f19495bea8ac6510f385d602680e9d2d2b0688d24bdb5e6dcb4a5b3955

See more details on using hashes here.

File details

Details for the file usearch-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be5426140b1ff06e78c976fca83e244199d5c3895a7c8821825c30b06e8ad9e3
MD5 626dc1a2c02c3fda0e7f6846bd9a2619
BLAKE2b-256 a5b9e3f4ae9d25497b10357f54a256c10dd8410b4a511b94127702cc00dededd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page