Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

$ pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'haversine' or other metric, default = 'ip'
    dtype='f32', # Quantize to 'f16' or 'i8' if needed, default = 'f32'
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + AI = Multi-Modal Semantic Search

USearch Semantic Image Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

import ucall
import uform
import usearch

import numpy as np
import PIL as pil

server = ucall.Server()
model = uform.get_model('unum-cloud/uform-vl-multilingual')
index = usearch.index.Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = model.preprocess_image(photo)
    vector = model.encode_image(image).detach().numpy()
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = model.preprocess_text(query)
    vector = model.encode_text(tokens).detach().numpy()
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications... on iOS?

USearch Maps with SwiftUI

With Objective-C and Swift iOS bindings, USearch can be easily used in mobile applications. The SwiftVectorSearch project illustrates how to build a dynamic, real-time search system on iOS. In this example, we use 2-dimensional vectors—encoded as latitude and longitude—to find the closest Points of Interest (POIs) on a map. The search is based on the Haversine distance metric but can easily be extended to support high-dimensional vectors.

Integrations

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.11.7},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.11.7-cp312-cp312-win_arm64.whl (264.8 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.11.7-cp312-cp312-win_amd64.whl (280.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.11.7-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp312-cp312-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp312-cp312-macosx_11_0_arm64.whl (399.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.11.7-cp312-cp312-macosx_10_9_x86_64.whl (417.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.11.7-cp312-cp312-macosx_10_9_universal2.whl (782.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.7-cp311-cp311-win_arm64.whl (263.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.11.7-cp311-cp311-win_amd64.whl (278.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.11.7-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp311-cp311-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp311-cp311-macosx_11_0_arm64.whl (401.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.11.7-cp311-cp311-macosx_10_9_x86_64.whl (415.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.11.7-cp311-cp311-macosx_10_9_universal2.whl (781.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.7-cp310-cp310-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.11.7-cp310-cp310-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.11.7-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp310-cp310-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp310-cp310-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.11.7-cp310-cp310-macosx_10_9_x86_64.whl (414.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.11.7-cp310-cp310-macosx_10_9_universal2.whl (776.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.7-cp39-cp39-win_arm64.whl (262.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.11.7-cp39-cp39-win_amd64.whl (273.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.11.7-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp39-cp39-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp39-cp39-macosx_11_0_arm64.whl (399.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.11.7-cp39-cp39-macosx_10_9_x86_64.whl (414.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.11.7-cp39-cp39-macosx_10_9_universal2.whl (777.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.7-cp38-cp38-win_amd64.whl (278.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.11.7-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp38-cp38-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp38-cp38-macosx_11_0_arm64.whl (399.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.11.7-cp38-cp38-macosx_10_9_x86_64.whl (414.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.11.7-cp38-cp38-macosx_10_9_universal2.whl (776.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.11.7-cp37-cp37m-win_amd64.whl (278.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.11.7-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.11.7-cp37-cp37m-musllinux_1_2_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.11.7-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.11.7-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.11.7-cp37-cp37m-macosx_10_9_x86_64.whl (408.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.11.7-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 264.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 73482f3b3ed43300cfd50e740dad1448aa2ec9897c6cbdf760115719043b560e
MD5 038ff992b6be03aeb398f9a9301be9a7
BLAKE2b-256 d6781734611c38018e968df59b2685c82ab685a53769204f9dc4ee909b4eeaf9

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bdad881cd6b51a46093cbaaa944f6e957690d7049c6d85d0c2aaa1293c24faed
MD5 979dcde58a684039601853b30e19bc75
BLAKE2b-256 f23f8003e39617587e8273c4951f7bedd0632641b0da7b369d133e863000e4ec

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2ce646a25e867802abb62a73660de300f6ef9c14c4dda2d028a3366bf10507e1
MD5 6cffe4b13bba27e6a7df0e5d72f8098c
BLAKE2b-256 e74a9b7a2054fcae28c8ae84ef0aa00089e5746b739878e8265e5c417acaf2f2

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 411860287b9378b83815185f296ecaf3cd68ce45634d8fb66e5cd6ca3f110bc4
MD5 35c3d8658d57a4b70506a884ee81e555
BLAKE2b-256 ace367841e70f2e4e0ae8986f53880ebf9323ca5989837890fd142a75a7fa4c3

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c90aad6bb352bee811a914721e3bda9dfe5db2593c66443d05d65bc9ea31c97f
MD5 47eb08ddab7458dff498e7ab91f5a500
BLAKE2b-256 50b99b376d1278f1302466a5ec79466acd628aeb37edcaf6609f3f0e52e73d44

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 427115e6ddbd8446574d92eb3d829f2b8f9dac62c321b2db92272ae7bf485e41
MD5 dbde2d8a0a5ad797a871630f2e9c2f66
BLAKE2b-256 961ab6a99115be8941363fa6f174731bfe1372da3008ff8d949478d2840cca3e

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84a663f688abf39242e001500ef9a4c97cd33f9c7659d1568c5b49f28aa879d9
MD5 c28a5f3a2eeb7fbb2ef03703954eecf1
BLAKE2b-256 dead1b4a45e7d851fdb754f17de3ebccb02fdf49e133e2ade54d8727ee0a7e7e

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fbb5c8d792b8d6f9fce4822692f9ac36a952769d98793ff0af6fcbe8c10c1ae
MD5 56a4573c679663b584d64a38917b6160
BLAKE2b-256 05525fcc6ea8563c33f94ded402c9b1112ca5b2439fa7c50e240d3462cc10e53

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0d7f5460cbbd1f9388a13324866c6d4ff23a10b1310f086033dbdbac2db4d80b
MD5 5fd72465565ad0b98e81e8fdb437346f
BLAKE2b-256 bea4350105115971676038382795e738195d6db8d23dcd0d0a21ffe3fb3cf30a

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 263.5 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 68e00edab62c18f3e3e7ffdfa4ad643077bc68410dc10d2805a21301ddf93ced
MD5 936eec094c30384e6127bc8f8e19fc94
BLAKE2b-256 afb54e044ab5e90513c560f7664629c8022a808526f5e2ca52b11a8d2f427ddf

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 de8d888e24f6c398f2dda07ec3bdfebd3fd382c3f25f87946a752f91fdc39c97
MD5 0637de7bb28c5bc8e50fdf0e0aab0b6e
BLAKE2b-256 b3fd0bfbba4e67d98f22aaf0470097b7884c942a422d02d4d4531e0db077c5ba

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9dde4529c0b64cdadf80865ed4635d5d843003a183ce92d40df6d9bff2b15c71
MD5 a282fb4ffe668bd47a64bfdddb0e8688
BLAKE2b-256 a267f3f89c7650d942f8798e789f47116956666df1a66b45e9bfa524d3d1b57f

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 dab5aa5f396dbf62c72f680c773ed7dfbbfff14859ac09d64995a4ef0accfe50
MD5 a475c35762886ad65491bb2706451787
BLAKE2b-256 d7af78122de2204e0131602506a34c919869b7b02c876a81fb0f3040d566607f

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4104495c7eb3c5abf26d10195761570d7512c4a6bf48fff515c5800ef02091c3
MD5 481f3765f9958dd92db3ee1854c2ba48
BLAKE2b-256 bac48b53ea7cee2cb185a9752c91b1090f048399a9a1d97c2f61fc46b4c1e643

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 417a3c1c623d2b49ddb2bb251cbdd0f54d23a0786345652e8a1e1015d5bf3daf
MD5 07f752b3937e2812e97c7a68daf63df7
BLAKE2b-256 b436183ff2f2ab2d8e35bc32f4ca752c8725584d7452819a36fe73af224343fa

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e4558f1226e8cee12200c4c37fb3180518f00c7925225baccbca162cc88d890
MD5 fc01bc46f5ae84ca3f613028f4b955c6
BLAKE2b-256 771d41df951a9d50a2530365d68f2910c4fcb691743d392b9847e08472ce513b

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f890ae36c13b010909a8df70421453f5283ee598bd266a9573a6b5686aa5071e
MD5 342d335ea052cdfc0fab58328d94d117
BLAKE2b-256 d0a9df53cb9da2f40018ed54a5a1bd02ad7c6d397eaf589bdab8b2a8b997f051

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 856cb34a1ede2c973964e65dc11add62567d4c7c07aea61a50d5f01122731b49
MD5 69c739c0790e62407bbb94aef2c35310
BLAKE2b-256 f6f120a8d2e4e0b19af7115fc589d5f74e341fd0cf501109b5f3f43a718a39a6

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 53bdd2d855fb7477e56c176c82e827bbbe3106e591b5f52a9ee0dafba3013e68
MD5 827b3ad4febfeb8dd234dbe016fac430
BLAKE2b-256 0f6dada0deb25c19153bca52a9b5cc0a353062770e457b24c335342d3a27b284

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f8428c0978f2adf2f82548650be090685b79b10e415ca754aad6df879b66b4f7
MD5 31f67c186a643f4b5716db647c371bdd
BLAKE2b-256 f94a30293a73707663c55f8555b340ce3bf5c7fc81c732c8600f75091725056f

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 603af076db935ea22aa61d3c9f430b9f9a653c8afe0f1fb7a8c2aecba708e9df
MD5 14ff86e4f6b232673aec259a1de0be61
BLAKE2b-256 73e532af35450e928ea703e066d10b7821f670fb169622b4c82380666e3867e3

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2e8a6cb6c633404772b2fdf21fc812ce30e203797a9b346db74dcbe63237755a
MD5 dd8400aa582366591e5e935c25676db3
BLAKE2b-256 e52b50d619f41a0efde98a7ae5bd827051a62fd6d1c42a0d1ea6dcdf4f2767fe

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 25c0be3b953b8fe2aa189b401c537ee001c6a7bf2275894fa7e58ccdfefd6785
MD5 062110ceb22e9b2bcf427cc8fe8780d3
BLAKE2b-256 efd1b7aa9eef2be968b881b4b045eff98d266d29f1a268b673770cd2958a0864

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 acfb829aa3a4df17ae1c97b4a02d144c066c3d9a69b8dc959aed2800e6553e0e
MD5 d29c1867acaead827aecc4784c551f9f
BLAKE2b-256 38b1b9a2dfdb264fdf8ec8df3b21bb9506af0a4d5ee9661f9be3ccccdf075f26

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5fc11a4a6fde75a4210d41658c2e5133aebeb89335d198a26c9cb52b959e43e
MD5 315e18e2fed88d520b6be84505dca289
BLAKE2b-256 4431a6ade24494d78be966477c980728923560b859161946fbc3293db804cbca

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d48c5f3eda49df4a340a03e2b6383aeb146337db01b252246247a6825313654c
MD5 f1c0481b760552127802b9c66c2c3cbd
BLAKE2b-256 b5bbce695793b5ef2e80752c5222f337ca8e02c22b0606a4786d4a16245fdb09

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 49adeb77ac12f72e571562c31504d88c1ae1e2e4044d379374ac2e2aa1567984
MD5 33ff97edb9c3ed6668ccda8af3bd9490
BLAKE2b-256 3b29be12512e78e2986d401acc1954cdcfcb863ce50eab35022240351a09da2e

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 e85173a5893a566d096f6f7c3933b36b563ef4a5f941cf531432706f8be25ef6
MD5 a2dfd03b7ad611f86d85a2b1c8236067
BLAKE2b-256 12563ee1c3ec6aee1cd07e17430308215a52d1e4e9348ee17d43a17ebfa2cda2

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 db589c819266d4d5e3f0a298cfb40bb22282bc21338cdc4adf57ab43816fe29a
MD5 ae69f5bd87094765e712f8b1acb13c6d
BLAKE2b-256 dd689c6746db8e7228bc6f516d80cabe9f6bd637d88fdf58ade0495e52a587ce

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 95111fcdc9b03aadd5f6a4d7e4a39b3f2804fbaedf23527d8ff7a5de0fdece09
MD5 a0ab7e4fc345872f261590960642c9b9
BLAKE2b-256 1dfb3876d8e00b5a0c74bda447c000fa9926cb543bf2ffa952d2b8f65b1eb5e2

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 917027553793c33829e7f570b6668abbe4670b1258ceeb2dc25c0667a29d8ff1
MD5 d153cd99c7121ef2a868c0bbbef63346
BLAKE2b-256 73a5ae41e5ee052dfa645de925a340513653d1eb3da977e1cb7b5764ce897e2f

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ca82d380d788c4b0acd65be48337ec0a43bfa981d9e08b9fe5f79d1a09cb5ea4
MD5 db4290e1099d8b1b6e0b8fecc0875c91
BLAKE2b-256 985111d8f66d191225cadfa2b5ecdafd5d52682c64a2810382bd55fa12421a3c

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3057b5ee8c96e57422ad459a99ebb762557dc41883103df63b2d8d41c6dfb808
MD5 956bb184afde0c63ce4fee336d63937c
BLAKE2b-256 706791c9c0c1bad90ec12ed56d9601964b3a10fee633bf8486cc4e8adee91a7f

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d20dee1c7fb08b75d2a890f5300744d918a928ccd88d4090d8f990252c91e16
MD5 e8ea8f7ee26f5180bf3ce6af2e7ddfe9
BLAKE2b-256 add52d64d66e36757a922e0f1fce41f5f2d62d63633a50dda7055a3a652172e7

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1fc2a0508f4b5e4e2e2087c5a54adb0a553c498ccb7865cbfc2ffd2e86151ec
MD5 dd51a16c0a145e9d4e63017bdc63375c
BLAKE2b-256 0795cf86d5082eddc6891006f52854501a44324a7364ec0cbb4eded9e8b1e653

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 15e63e6566f0367d503dab2b2617007044077be807d8a25cd686dbccc21fe12e
MD5 9d875c311e5c3178a8ce46547432c9e9
BLAKE2b-256 750abb0dbe81f88a37ff868eeb87d1595626ab7522f2fe2267c0adccf9c38c83

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 278.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ed5010299143ca3cec7470901fe455ce82050fc037db2509cb2790e953aa4a5
MD5 f969e851c37f85e1d213b9aee1097301
BLAKE2b-256 4771a9c83c517fd1e372d47317d1df286588487189924d8271d2b33161e6e8c5

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e2cc6619af6c62f2af6d8475deafbf008011778edd05a144ffe7f287258e0124
MD5 8d74321c2a71b9f554b7418b808790d5
BLAKE2b-256 ff71c03b447b1fbb978fb027a86547edaec13f3a6bfa52ed10eb7d12e4abc86d

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6741ba968e6bbd2a79d688c30e5af9cb1a7a3b16045dc1ff71f7e382dfd94af2
MD5 040b07b84ac3442d4f147e1712bf2c5c
BLAKE2b-256 a13b9c6e64e02678d91666642251e0034f02726093e45b3cbc0f040dcc52a7d6

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5bff89d5bc22f99f7783a10e9780140e283d355d03644cb9bdf42ac3fb94b9e5
MD5 4c5a90bda50f916797cd2e406e0ce356
BLAKE2b-256 e6a02487ab4081c81c17b4d80845318f31e1b67aafd90a2c0665c3857b447582

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 01be00b3e6835a86a2b8645fbbaf276d1bce95bcca66bd36f41a1464c4fc3a63
MD5 50d21f6a1c95623089abfe216b911282
BLAKE2b-256 ce1bb6aa018d86004d0f4c056f82ad50c990100e84293212f7a124d79c703d80

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56a9d560158a353c238f8b8320f5d92627595dbede35fe753e6bafbab391f171
MD5 fc2ba700e7eb596edb7ebeec3bfdef69
BLAKE2b-256 b52a80af10f4437fe954a648904c0494cd931b4394b6da932dbacc27465f59c2

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71acbf15c6f1adb9cafa7fce143e5ee2152b22abbcfeb49f0e5ada2747ed0b12
MD5 2212f5547d3693be27cef1264d5521e2
BLAKE2b-256 a664be07d840f6dd81d6d3b27bf56cdab48deada8281b7e08ab0a47996245792

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 84d2de1291211bf9ef599700eac048536196b7040c27c782ebd1f68e635740ee
MD5 3d5154f1e4f09c4fda53a33327da0fbc
BLAKE2b-256 828d2cf66c6fe328bd412b2d2c147b65f2d15e3c36ec29263866276d072c1232

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.11.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f0e898a7343a70016f6342693439aebb185a201db50f9cd014e8c7b1770e5f68
MD5 46ac3ba5a1a5a4d3bd5698da90d3719d
BLAKE2b-256 4e5b6dd17bdbd3c1c7c6378742668452cda222a193379ebdae682ee1d3e8d3d3

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5052cffbfd80ed9330c1c5b16f6d0eef1e7c8776457bba3f829db235dd35ebd0
MD5 1128a50926ab845c94e9548f39ea7eba
BLAKE2b-256 31bcf0d540714edae6e50de66a176b393304fa33e4839b3ab9fc41823e04ab29

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b362e0d07c7b46d681bc40fa83576099bcf7dfa8765d24685e16dd477741b710
MD5 c9e5acc13260615626f1ac906236e2fb
BLAKE2b-256 f425ae40b935129785dd181eb244a017ad96035073d03dbec262ee665849a28a

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 484fe24e8af5bb2f6b0df5f2b5f1c0124ed1d4a871b6252229fe11ead7b95790
MD5 931a785ff6f44e553b29a91ee22b557f
BLAKE2b-256 3d3988a000652b95801fa479d4bd58cebc8bdf7cc68a23b97d590fc7464ddd6b

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 765c3995d132a08ddd1d4893ca5671c5d6a3d64aff3d81e5867df5ac02557985
MD5 76bbbf3b5c1308f2c804237d0d9d819c
BLAKE2b-256 410bff516d6018edd58322cae1410bf6ea5b284eb9539ff830b6c1b43be28a6b

See more details on using hashes here.

File details

Details for the file usearch-2.11.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.11.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60945fe5ba134e6e089d902f42bcee72800ab674aae72e0403822b0d7550f8e7
MD5 70fbe25862ba3d7b5545207769d97d1a
BLAKE2b-256 1fcae52f53abdfda6a774aeb4665446d2c6fe92e4cc0ebbab04ccfa16daca4b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page