Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install numpy usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)

vector = np.array([0.2, 0.6, 0.4])
index.add(42, vector)

matches = index.search(vector, 10)

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but f16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='f16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

USearch uint40_t support

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be implemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.13.2},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.13.2-cp312-cp312-win_arm64.whl (262.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.13.2-cp312-cp312-win_amd64.whl (280.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.13.2-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp312-cp312-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp312-cp312-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.13.2-cp312-cp312-macosx_10_9_x86_64.whl (374.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.13.2-cp312-cp312-macosx_10_9_universal2.whl (696.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.2-cp311-cp311-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.13.2-cp311-cp311-win_amd64.whl (278.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.13.2-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp311-cp311-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp311-cp311-macosx_11_0_arm64.whl (361.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl (371.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.13.2-cp311-cp311-macosx_10_9_universal2.whl (692.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.2-cp310-cp310-win_arm64.whl (260.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.13.2-cp310-cp310-win_amd64.whl (277.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.13.2-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp310-cp310-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp310-cp310-macosx_11_0_arm64.whl (360.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl (369.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.13.2-cp310-cp310-macosx_10_9_universal2.whl (690.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.2-cp39-cp39-win_arm64.whl (261.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.13.2-cp39-cp39-win_amd64.whl (273.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.13.2-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp39-cp39-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp39-cp39-macosx_11_0_arm64.whl (360.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl (370.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.13.2-cp39-cp39-macosx_10_9_universal2.whl (690.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.2-cp38-cp38-win_amd64.whl (277.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.13.2-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp38-cp38-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp38-cp38-macosx_11_0_arm64.whl (359.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl (369.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.13.2-cp38-cp38-macosx_10_9_universal2.whl (689.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.13.2-cp37-cp37m-win_amd64.whl (278.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.13.2-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.13.2-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.13.2-cp37-cp37m-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.13.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl (366.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.13.2-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 262.4 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 9bfecb48814b77c439f8c0d72eb6e645d3a00a16f9385643f78732e4c207b68a
MD5 3bc725204344bddc4a7119b7b3702bb8
BLAKE2b-256 870933890646c2e65d9719dc92e7febb3d6f2d11e9bbbf8834c734e90fe10f82

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 280.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9a69c6ae3d35e9fa03366782984ff97df3a8ee4d6995d51dee5bdf59fb13c5be
MD5 ada8a188e29b02bbf8b1ceb32550c394
BLAKE2b-256 0612d559e35ae380175ae758edc105fac332be04f34f9a6df3aebea14a1779c4

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ce2f471bf3e947841f446f8e44963edffa90db66f5d315d0e0e738f0369264f
MD5 93c5a0c53cc2e828629a46c7bc0b8309
BLAKE2b-256 834e8daddf78a5abe002ea26a96b2d90cc7b6f4fb4816d321fc5544dbae86636

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 14b0fb3ac8829e805e4971d846d248e80f7b5274c59d845678bcaa6fbe84426d
MD5 1237b6b94036b8b63bf39e8f5bfebb90
BLAKE2b-256 94fd15b8648cc19f41dbb49278970518d76215933b9bf2032c6c6dafd5115d2f

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9d66e3274dbb71f978df4acd741da288bbdb129b9af6f5ac6223182f7f7f9fb8
MD5 c3d9a2649b07acf5e208c4d98184fa82
BLAKE2b-256 127b67b4b9c8ec73c347f9f7edb2b37ab5c352c446392acee73e4b3665b8974f

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0ed6f52e841fb49e244bcbcdad982febaacd782eff1e8cf31377de02baa4e504
MD5 16a2a02493cb3f07d50beccc8ede3e11
BLAKE2b-256 9dbf3f205cc64f17ffb951e185876317dd6ab998832383be89be38adb9bf346b

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa17338313cf50e04cf11785e5892976513152a4b5f37b019602f772e35c4cc3
MD5 32d908a45919f0dc994eabb3c89ee85d
BLAKE2b-256 256b92aa0cc86b800a57ef94bbacc333129b24e040b05a652c09ac27b90cfc64

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14effe0f433847f41b7a2304165a23b6c6a0955e46a26731fc89cb4488d3debf
MD5 afa9bc2bd3b9f4e8bfd248fad7040dc1
BLAKE2b-256 33e25acc5921b7c5cb4867e8c0e15868b25b8d45a1f329f3431b8e1c205ed3bb

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cadf54a120e76472ae8a355ba5189d524ef0a0a0cadf07c399669283128a47c8
MD5 483e051cba2b304e7b31ff2386d68f42
BLAKE2b-256 4b0673475e026cb7ca4db40fffbe4c424e31fc06a1106fbabdc3c33db389083b

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 7881dc53571fbb8b81ee4c41ca4d666d76441fe69f3e99641fa8da99b98ecbf1
MD5 0517dea4384134c50c1e93a173b6e636
BLAKE2b-256 32767ac512c39b915266c3a5a2080a341765950872c0cfe79e5f27b9945d079f

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 278.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f3dfcabd448547f1cd1d315a4f7493c360e0972a4bce0d0217a95a58e60d6369
MD5 521706aa6ce85cd627862243676219ee
BLAKE2b-256 6f3b18028045be6019e19cb641c4d394d63c717894e20967cda486bc01b3ce0a

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4905b65f00b02f609f3fff6b954b1e912b0349498e907f926290094838d5e996
MD5 7d419f2d8f77f1c64f555b31a1947af6
BLAKE2b-256 9e3a26057f7ade0ded562e98bc5060535783ee217eff64e2cf11aa849876ba5b

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 682b5b7b2935269269d862ac651356bc80b5005e3943d7cbaecb949828a82359
MD5 78fbdc2d1a47eed389cb4a2fed6d1c4e
BLAKE2b-256 68dce5e3f8666ea7f57948f3f71f090ccf38e04c63a814a73870d0e382e3ce4d

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a2c75f980536893d6e7879d2be34ad426b0823c3197b4a5e8d07cd6944787784
MD5 171073ba14cd48bb19742f2cc993d110
BLAKE2b-256 6d29988edf8f52e4f52d59ecdc4addb15fda2a5dbbf639ebe522f9717f61643e

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 30ca771280bb47de63cb3d77d727b5c5537f60477b1da9857e40d9835db7a664
MD5 2f11ba871f24835dcf95171825d880f7
BLAKE2b-256 03ec8e6e1d0fe819b20b542529f6fb741301c86774d37dba4eab78babb67d7aa

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5de2eb6d6468a369c051f7523d5431fa64d3b2331c6191b6430d7344de575eb
MD5 9c720f6d81dc1aea5892032c5adacbf9
BLAKE2b-256 983fe3b3de70287ddf5a0aafc72550ecac6ec9b387fa446a899def2e18792132

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11796b2d10bce16d373f9d2badc2ed361bd44b5b96e02fbd30c48adbb084c63d
MD5 b771c5103b2c980dde275a0c65571e57
BLAKE2b-256 4c46043261f08909f43163dd1e1503c6b166181176b700a8698386e2c18fa6ed

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3ba61347e7eda059c2f02dec4ad4ff89b317e10c9d25a73b06f92b8b2f40a855
MD5 2c505d83387cddbb4ede89a167896fd5
BLAKE2b-256 169c0df427a4fc10ebc82de2717bae248d737a810bcc10f41ddc405b26c262d5

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 260.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 906ad9304b0dc678fa79afd5282869c48bb88039914c4d4c14cf98b3fd8596da
MD5 bed01d265b8a8918ccf38dcde6a3376f
BLAKE2b-256 98c09fd3dc6900883784b84cc35ca95c1148c31d8951f8bdff92d4265897cd63

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 277.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a11768735610d221f775ad34a9a904a637d94e71c9b0746243da7383197ca03e
MD5 c3410c4ba59569ac1b6a1485a54015bf
BLAKE2b-256 b60ca0d783ba63af3bcd113f080ae835860368f6710b286685ef6613a5604240

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f57ff2e6d4c517b86908b9f77ebfb71e18db25110589f2b7c28b5f713d582ba2
MD5 6f19c9e37a85900fb1755100c73c2cfa
BLAKE2b-256 dface45bced8d285dca8ff1def57872bad9b77d407d96c4010a9b087acba0ab9

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3cc1ef99a7023d13d9c6e2d0cf182fe9f13b5fcafba559247c4cecfc12fa47ee
MD5 8d1bfbd39dd15f95217fe0297208628d
BLAKE2b-256 99236621ce3586e049b7beec17741bf329017051aca9ba34c750951b044259c2

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2ce68c330273d7a1eb3e1ef39dc318f60bd74eca055877ece865c7c45c2440eb
MD5 a157a8d9d36f93dffce84c1d968e6336
BLAKE2b-256 5ba23d982484a9861586d3c6c0938007d669cbfe1dbe9a696647065a041b7436

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5c13219c73e506663fcb577722c57a91bcdbafc7e8d20f9d3233efee643dba72
MD5 fbaf7b4ac2f7dffa8b863fb64fd9ad8b
BLAKE2b-256 2b00a7f4f6e29051040924de0cdba57e77625ef6f989d03a576a3f679fd48a1c

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f649031009b4828ae87aba650ee620a617a98bfcacd501f76f0b92ad93aef77
MD5 342a88002ad7b580d60aaa344f8d4ae8
BLAKE2b-256 ef35620e959825ae8d246efa1aa5e87a45e101febaac5cd74b27970080365154

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6cb9ab2448c531c17847135e06cf00abdb6a45bfc06e13330144e0baf0b3fdb
MD5 3a536930205347104a5063223e7a84af
BLAKE2b-256 73a23bdb014f8356090e14410ed8aec1f103c39a3a0ff745273d07150c84d312

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9d1e39e46bc132df19930b8432a32722946f339ebbdbdd0075fbc0819ba00103
MD5 cfeb095763a3ffa111188c763f11dd8b
BLAKE2b-256 cf1f184aaf8a6f23bb787b071359a9bda11283d1fb241cd137442d2f60278032

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 261.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 bc39d38d8552325dd87ce2946ec94ab7f65e5895e8e681d5996d79197d8adfeb
MD5 a41c5e22e8150193121628e3156b81ba
BLAKE2b-256 1c386e8fa25034f7dc42195e693e8ec08b1c43b289a22810c79c97417217191b

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 273.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a92a2fa400024a5bf0a09d0d49f86db6db787eb9d7de7b1f2f0249e796e9408c
MD5 c63c9a94c0308ae82e56d4a42ded6692
BLAKE2b-256 f8884775f107dddde9741340075d7b2e577f9b33ed7f3191b2fb8846466f7b7a

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 486134f647b3ddc5baae49f57ef014618bb7c9f0d2b8c6adc178ab793ad2191f
MD5 09e4a970740b37ec26dbbab7ffcbc18d
BLAKE2b-256 0298c66ec5f584e169b3f56b74b22e9bff5c514cb52f0554e84ccb7cb562ce29

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bfbd43571f42af16cd30796d7132edfe5514088bafc96f5178caf4990e1efd14
MD5 9d4b1cf821f0c2f50aa43ab4ef0f3827
BLAKE2b-256 77a996f1140d62440c919e3ae9a501c6eb863a286382557f3d4ec98d0824e575

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8c48a1e24f37c97e698471ecd25393ef5291a71f0e90887a1fe0001dfbe19aa5
MD5 8abcef3f9b4e0fda2597fbab5ba68044
BLAKE2b-256 6f86ae16e3533d9b663bf9155550a54a83c09ff350ec1b40f04aac100293ec16

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ef1cce3580f946d97b9b58278b6960632abcd4b62c2be566f0ea11dd78cc0252
MD5 b3166fe6f5b15052338ddbaaafbc5d15
BLAKE2b-256 669540ed4e7025549841719981517be4815b391098c0ea3f481a34f7d3aa3d62

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0a4afa048fec3893651841c6430e6b98f85c1a9690687823fdf6c31712bd09f
MD5 8914212642c8fb7f21a6fccec34b2af4
BLAKE2b-256 6d1c8bc6f26a580cefc936bb4fcfc66b12e7e36e378334f1ba5e7f698225e9a9

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b01ce27094c30e370766b145190842f2715362113da712322bc9eed7a1099d2
MD5 80363a35a0f50425421391de258a1a31
BLAKE2b-256 f0c48ddd968a37dbd6b3a680a6b0b6de311e56b7ab6548852b8f678cc705aa97

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b7eeeda7d2f9f3b5e0fbd0c6befc783461c43777a97ae46a358acd44500ce8a4
MD5 c80bd3c3c55ef4a4913d35394039db36
BLAKE2b-256 cad3f5444cdbd22a6ced6013b789c2e78470baa2d0cd7063dac6434a2ce264ca

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 277.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 30dac0f71a6f05c80075f62e32b1a535b41a5073499ecbe577ca0298c1be8a8c
MD5 74297dba1492a805a8800599431de4e9
BLAKE2b-256 ed1c9be2ac0492d3921412dd92fdab20510567abd4c012bbf6cdc2d5706a34a3

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 94d144f5a5616a1b5f333219ee3f05420aa2fd44d6463e58affaf0e62bd1143d
MD5 9f12effcefcc5b366f04fdaa7b1295dd
BLAKE2b-256 df889d5ab6eaa99c041687e9391987229f351ab2186eeb32340763c4d9cd6baf

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cb586334a6b801fe2a6ca7dae5af7a1b7c26aa01efffef708eff35cda45ce5a3
MD5 d0675f5dc8bd8a3adf2119205e3872be
BLAKE2b-256 00af6458355328efb4c7df83faf8fd9210c361340c3d36f5ce4603c1e5965905

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2bbae49cabea6982cb1a8f68aab0a3772c8f9ce0e9e6a9842969b39d391c919b
MD5 f78b5da912f2772dec151d6c57b9f240
BLAKE2b-256 67c07cb73f90f152ea23ab7c69017dde3d0267c8b837566abdb9120d666cfa74

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 64cf63b0e0a707d0064fd0d0eb73899d36a6ed6f694603d24e3fb6921903b09c
MD5 37d00f63175c93f00e19ef4e21b064b5
BLAKE2b-256 5cd371d872eecef8d64f5b81ffc2b35fe3d3cc66d844f1da1a40242e43f72a6c

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd0c6f27c07505929f09a90637c59f3719a0b2201faed61ee3cbeca65af56165
MD5 1427e5858cab8633daae5966a48efd74
BLAKE2b-256 2b9e7177e0a8627098c99e3429cda75df53cbd19a3b8c7182108b80dd31ac225

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 158aeb09fecc25d725465c0c6dee0793fe34eae668e23545eb927706e9ac1e35
MD5 1fd38fe0ebc8018a1fc3ac6490fa9db8
BLAKE2b-256 b1e2a5434ffd99c2ebb2b998bd9f56fb89288ca55abb1183f7c8340264337f2b

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 16014dd2e8b798eb8012223c51847b59d9ad8b7a9424b6ae32101f3f31d6e711
MD5 b1a094593ee7d1ea7200dd3929f1b7b0
BLAKE2b-256 fc35835b719202437e12ab0eddebfabb35e61556a7711e1f432be50dd1b7b5c6

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.13.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7dcd9c9c1509dc6435d332569f05312eba6dab820b5ed28674e0b0444de23057
MD5 a85b200ca4d6b69b656a9e43cd6e2570
BLAKE2b-256 b220057a6f07bf8b1c639cfbdfb7c330e8ed70237e064188a759c54b5198359e

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d25bcea3f81d1bf2e836dc35f3c83d7d39b7123b4b39f77827af547fec5b8d15
MD5 352d57b5687159c98b6321a85e8c254e
BLAKE2b-256 4c77f4dfec8db3c03648d753f2c7f2f321de6fabd3eef84fbc76e5cca18c8c10

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ba46879670aa27fff4d5446296a95d1ff62e52d9165d8ac6ac3fdd949998d0c9
MD5 a02669b8e8fce66515f144cb7bf98dc4
BLAKE2b-256 e98511cec0aabde2d07e089cf4f446154b5938d9fea5d692ecb6e7db1c57a1fa

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 04aca42da4dcccd20c6524a3ece6e4e3e458ea5a15fd51f2d39bc9b353d475c0
MD5 22925f442f7fd1a1b709e768d4023c1d
BLAKE2b-256 005aafc25753ce4c70b7c1583b90573f824dd3b897270150be340302f6130038

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5115c25e1ba4a5beff0fa4780ea7db3b60a827efe3f72453b7fee6b299878d19
MD5 e12d06c56e7d2b0f10de47e150b00fab
BLAKE2b-256 d9e35aba2a782bf31501983145c40abebaa76a673c4a6d2c242b9579eb5f27df

See more details on using hashes here.

File details

Details for the file usearch-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6055b056557a02b63506c2c6bf30b97f7645f212accba1f4fdce8826ccfa823
MD5 f2c378efd032abb3a69c39352b934161
BLAKE2b-256 3131f5cbf73141fbf3ff1aab2b856c48b5f33973ee7a899c6cb69a912772dc3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page