Skip to main content

Smaller & Faster Single-File Vector Search Engine from Unum

Project description

USearch

Smaller & Faster Single-File
Similarity Search & Clustering Engine for Vectors & 🔜 Texts


Discord     LinkedIn     Twitter     Blog     GitHub

Spatial • Binary • Probabilistic • User-Defined Metrics
C++ 11Python 3JavaScriptJavaRustC 99Objective-CSwiftC#GoLangWolfram
Linux • MacOS • Windows • iOS • WebAssembly • SQLite3


Technical Insights and related articles:

Comparison with FAISS

FAISS is a widely recognized standard for high-performance vector search engines. USearch and FAISS both employ the same HNSW algorithm, but they differ significantly in their design principles. USearch is compact and broadly compatible without sacrificing performance, primarily focusing on user-defined metrics and fewer dependencies.

FAISS USearch Improvement
Indexing time ⁰
100 Million 96d f32, f16, i8 vectors 2.6 · 2.6 · 2.6 h 0.3 · 0.2 · 0.2 h 9.6 · 10.4 · 10.7 x
100 Million 1536d f32, f16, i8 vectors 5.0 · 4.1 · 3.8 h 2.1 · 1.1 · 0.8 h 2.3 · 3.6 · 4.4 x
Codebase length ¹ 84 K SLOC 3 K SLOC maintainable
Supported metrics ² 9 fixed metrics any metric extendible
Supported languages ³ C++, Python 10 languages portable
Supported ID types ⁴ 32-bit, 64-bit 32-bit, 40-bit, 64-bit efficient
Filtering ⁵ ban-lists any predicates composable
Required dependencies ⁶ BLAS, OpenMP - light-weight
Bindings ⁷ SWIG Native low-latency
Python binding size ⁸ ~ 10 MB < 1 MB deployable

Tested on Intel Sapphire Rapids, with the simplest inner-product distance, equivalent recall, and memory consumption while also providing far superior search speed. ¹ A shorter codebase of usearch/ over faiss/ makes the project easier to maintain and audit. ² User-defined metrics allow you to customize your search for various applications, from GIS to creating custom metrics for composite embeddings from multiple AI models or hybrid full-text and semantic search. ³ With USearch, you can reuse the same preconstructed index in various programming languages. ⁴ The 40-bit integer allows you to store 4B+ vectors without allocating 8 bytes for every neighbor reference in the proximity graph. ⁵ With USearch the index can be combined with arbitrary external containers, like Bloom filters or third-party databases, to filter out irrelevant keys during index traversal. ⁶ Lack of obligatory dependencies makes USearch much more portable. ⁷ Native bindings introduce lower call latencies than more straightforward approaches. ⁸ Lighter bindings make downloads and deployments faster.

Base functionality is identical to FAISS, and the interface must be familiar if you have ever investigated Approximate Nearest Neighbors search:

# pip install usearch

import numpy as np
from usearch.index import Index

index = Index(ndim=3)               # Default settings for 3D vectors
vector = np.array([0.2, 0.6, 0.4])  # Can be a matrix for batch operations
index.add(42, vector)               # Add one or many vectors in parallel
matches = index.search(vector, 10)  # Find 10 nearest neighbors

assert matches[0].key == 42
assert matches[0].distance <= 0.001
assert np.allclose(index[42], vector, atol=0.1) # Ensure high tolerance in mixed-precision comparisons

More settings are always available, and the API is designed to be as flexible as possible. The default storage/quantization level is hardware-dependant for efficiency, but bf16 is recommended for most modern CPUs.

index = Index(
    ndim=3, # Define the number of dimensions in input vectors
    metric='cos', # Choose 'l2sq', 'ip', 'haversine' or other metric, default = 'cos'
    dtype='bf16', # Store as 'f64', 'f32', 'f16', 'i8', 'b1'..., default = None
    connectivity=16, # Optional: Limit number of neighbors per graph node
    expansion_add=128, # Optional: Control the recall of indexing
    expansion_search=64, # Optional: Control the quality of the search
    multi=False, # Optional: Allow multiple vectors per key, default = False
)

Serialization & Serving Index from Disk

USearch supports multiple forms of serialization:

  • Into a file defined with a path.
  • Into a stream defined with a callback, serializing or reconstructing incrementally.
  • Into a buffer of fixed length or a memory-mapped file that supports random access.

The latter allows you to serve indexes from external memory, enabling you to optimize your server choices for indexing speed and serving costs. This can result in 20x cost reduction on AWS and other public clouds.

index.save("index.usearch")

loaded_copy = index.load("index.usearch")
view = Index.restore("index.usearch", view=True)

other_view = Index(ndim=..., metric=...)
other_view.view("index.usearch")

Exact vs. Approximate Search

Approximate search methods, such as HNSW, are predominantly used when an exact brute-force search becomes too resource-intensive. This typically occurs when you have millions of entries in a collection. For smaller collections, we offer a more direct approach with the search method.

from usearch.index import search, MetricKind, Matches, BatchMatches
import numpy as np

# Generate 10'000 random vectors with 1024 dimensions
vectors = np.random.rand(10_000, 1024).astype(np.float32)
vector = np.random.rand(1024).astype(np.float32)

one_in_many: Matches = search(vectors, vector, 50, MetricKind.L2sq, exact=True)
many_in_many: BatchMatches = search(vectors, vectors, 50, MetricKind.L2sq, exact=True)

If you pass the exact=True argument, the system bypasses indexing altogether and performs a brute-force search through the entire dataset using SIMD-optimized similarity metrics from SimSIMD. When compared to FAISS's IndexFlatL2 in Google Colab, USearch may offer up to a 20x performance improvement:

  • faiss.IndexFlatL2: 55.3 ms.
  • usearch.index.search: 2.54 ms.

User-Defined Metrics

While most vector search packages concentrate on just two metrics, "Inner Product distance" and "Euclidean distance", USearch allows arbitrary user-defined metrics. This flexibility allows you to customize your search for various applications, from computing geospatial coordinates with the rare Haversine distance to creating custom metrics for composite embeddings from multiple AI models, like joint image-text embeddings. You can use Numba, Cppyy, or PeachPy to define your custom metric even in Python:

from numba import cfunc, types, carray
from usearch.index import Index, MetricKind, MetricSignature, CompiledMetric

@cfunc(types.float32(types.CPointer(types.float32), types.CPointer(types.float32)))
def python_inner_product(a, b):
    a_array = carray(a, ndim)
    b_array = carray(b, ndim)
    c = 0.0
    for i in range(ndim):
        c += a_array[i] * b_array[i]
    return 1 - c

metric = CompiledMetric(pointer=python_inner_product.address, kind=MetricKind.IP, signature=MetricSignature.ArrayArray)
index = Index(ndim=ndim, metric=metric, dtype=np.float32)

Similar effect is even easier to achieve in C, C++, and Rust interfaces. Moreover, unlike older approaches indexing high-dimensional spaces, like KD-Trees and Locality Sensitive Hashing, HNSW doesn't require vectors to be identical in length. They only have to be comparable. So you can apply it in obscure applications, like searching for similar sets or fuzzy text matching, using GZip compression-ratio as a distance function.

Filtering and Predicate Functions

Sometimes you may want to cross-reference search-results against some external database or filter them based on some criteria. In most engines, you'd have to manually perform paging requests, successively filtering the results. In USearch you can simply pass a predicate function to the search method, which will be applied directly during graph traversal. In Rust that would look like this:

let is_odd = |key: Key| key % 2 == 1;
let query = vec![0.2, 0.1, 0.2, 0.1, 0.3];
let results = index.filtered_search(&query, 10, is_odd).unwrap();
assert!(
    results.keys.iter().all(|&key| key % 2 == 1),
    "All keys must be odd"
);

Memory Efficiency, Downcasting, and Quantization

Training a quantization model and dimension-reduction is a common approach to accelerate vector search. Those, however, are only sometimes reliable, can significantly affect the statistical properties of your data, and require regular adjustments if your distribution shifts. Instead, we have focused on high-precision arithmetic over low-precision downcasted vectors. The same index, and add and search operations will automatically down-cast or up-cast between f64_t, f32_t, f16_t, i8_t, and single-bit b1x8_t representations. You can use the following command to check, if hardware acceleration is enabled:

$ python -c 'from usearch.index import Index; print(Index(ndim=768, metric="cos", dtype="f16").hardware_acceleration)'
> sapphire
$ python -c 'from usearch.index import Index; print(Index(ndim=166, metric="tanimoto").hardware_acceleration)'
> ice

In most cases, it's recommended to use half-precision floating-point numbers on modern hardware. When quantization is enabled, the "get"-like functions won't be able to recover the original data, so you may want to replicate the original vectors elsewhere. When quantizing to i8_t integers, note that it's only valid for cosine-like metrics. As part of the quantization process, the vectors are normalized to unit length and later scaled to [-127, 127] range to occupy the full 8-bit range. When quantizing to b1x8_t single-bit representations, note that it's only valid for binary metrics like Jaccard, Hamming, etc. As part of the quantization process, the scalar components greater than zero are set to true, and the rest to false.

USearch uint40_t support

Using smaller numeric types will save you RAM needed to store the vectors, but you can also compress the neighbors lists forming our proximity graphs. By default, 32-bit uint32_t is used to enumerate those, which is not enough if you need to address over 4 Billion entries. For such cases we provide a custom uint40_t type, that will still be 37.5% more space-efficient than the commonly used 8-byte integers, and will scale up to 1 Trillion entries.

Indexes for Multi-Index Lookups

For larger workloads targeting billions or even trillions of vectors, parallel multi-index lookups become invaluable. Instead of constructing one extensive index, you can build multiple smaller ones and view them together.

from usearch.index import Indexes

multi_index = Indexes(
    indexes: Iterable[usearch.index.Index] = [...],
    paths: Iterable[os.PathLike] = [...],
    view: bool = False,
    threads: int = 0,
)
multi_index.search(...)

Clustering

Once the index is constructed, USearch can perform K-Nearest Neighbors Clustering much faster than standalone clustering libraries, like SciPy, UMap, and tSNE. Same for dimensionality reduction with PCA. Essentially, the Index itself can be seen as a clustering, allowing iterative deepening.

clustering = index.cluster(
    min_count=10, # Optional
    max_count=15, # Optional
    threads=..., # Optional
)

# Get the clusters and their sizes
centroid_keys, sizes = clustering.centroids_popularity

# Use Matplotlib to draw a histogram
clustering.plot_centroids_popularity()

# Export a NetworkX graph of the clusters
g = clustering.network

# Get members of a specific cluster
first_members = clustering.members_of(centroid_keys[0])

# Deepen into that cluster, splitting it into more parts, all the same arguments supported
sub_clustering = clustering.subcluster(min_count=..., max_count=...)

The resulting clustering isn't identical to K-Means or other conventional approaches but serves the same purpose. Alternatively, using Scikit-Learn on a 1 Million point dataset, one may expect queries to take anywhere from minutes to hours, depending on the number of clusters you want to highlight. For 50'000 clusters, the performance difference between USearch and conventional clustering methods may easily reach 100x.

Joins, One-to-One, One-to-Many, and Many-to-Many Mappings

One of the big questions these days is how AI will change the world of databases and data management. Most databases are still struggling to implement high-quality fuzzy search, and the only kind of joins they know are deterministic. A join differs from searching for every entry, requiring a one-to-one mapping banning collisions among separate search results.

Exact Search Fuzzy Search Semantic Search ?
Exact Join Fuzzy Join ? Semantic Join ??

Using USearch, one can implement sub-quadratic complexity approximate, fuzzy, and semantic joins. This can be useful in any fuzzy-matching tasks common to Database Management Software.

men = Index(...)
women = Index(...)
pairs: dict = men.join(women, max_proposals=0, exact=False)

Read more in the post: Combinatorial Stable Marriages for Semantic Search 💍

Functionality

By now, the core functionality is supported across all bindings. Broader functionality is ported per request. In some cases, like Batch operations, feature parity is meaningless, as the host language has full multi-threading capabilities and the USearch index structure is concurrent by design, so the users can implement batching/scheduling/load-balancing in the most optimal way for their applications.

C++ 11 Python 3 C 99 Java JavaScript Rust GoLang Swift
Add, search, remove
Save, load, view
User-defined metrics
Batch operations
Filter predicates
Joins
Variable-length vectors
4B+ capacities

Application Examples

USearch + UForm + UCall = Multimodal Semantic Search

AI has a growing number of applications, but one of the coolest classic ideas is to use it for Semantic Search. One can take an encoder model, like the multi-modal UForm, and a web-programming framework, like UCall, and build a text-to-image search platform in just 20 lines of Python.

from ucall import Server
from uform import get_model, Modality
from usearch.index import Index

import numpy as np
import PIL as pil

processors, models = get_model('unum-cloud/uform3-image-text-english-small')
model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]

server = Server()
index = Index(ndim=256)

@server
def add(key: int, photo: pil.Image.Image):
    image = processor_image(photo)
    vector = model_image(image)
    index.add(key, vector.flatten(), copy=True)

@server
def search(query: str) -> np.ndarray:
    tokens = processor_text(query)
    vector = model_text(tokens)
    matches = index.search(vector.flatten(), 3)
    return matches.keys

server.run()

Similar experiences can also be implemented in other languages and on the client side, removing the network latency. For Swift and iOS, check out the ashvardanian/SwiftSemanticSearch repository.

SwiftSemanticSearch demo Dog SwiftSemanticSearch demo with Flowers

A more complete demo with Streamlit is available on GitHub. We have pre-processed some commonly used datasets, cleaned the images, produced the vectors, and pre-built the index.

Dataset Modalities Images Download
Unsplash Images & Descriptions 25 K HuggingFace / Unum
Conceptual Captions Images & Descriptions 3 M HuggingFace / Unum
Arxiv Titles & Abstracts 2 M HuggingFace / Unum

USearch + RDKit = Molecular Search

Comparing molecule graphs and searching for similar structures is expensive and slow. It can be seen as a special case of the NP-Complete Subgraph Isomorphism problem. Luckily, domain-specific approximate methods exist. The one commonly used in Chemistry is to generate structures from SMILES and later hash them into binary fingerprints. The latter are searchable with binary similarity metrics, like the Tanimoto coefficient. Below is an example using the RDKit package.

from usearch.index import Index, MetricKind
from rdkit import Chem
from rdkit.Chem import AllChem

import numpy as np

molecules = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO')]
encoder = AllChem.GetRDKitFPGenerator()

fingerprints = np.vstack([encoder.GetFingerprint(x) for x in molecules])
fingerprints = np.packbits(fingerprints, axis=1)

index = Index(ndim=2048, metric=MetricKind.Tanimoto)
keys = np.arange(len(molecules))

index.add(keys, fingerprints)
matches = index.search(fingerprints, 10)

That method was used to build the "USearch Molecules", one of the largest Chem-Informatics datasets, containing 7 billion small molecules and 28 billion fingerprints.

USearch + POI Coordinates = GIS Applications

Similar to Vector and Molecule search, USearch can be used for Geospatial Information Systems. The Haversine distance is available out of the box, but you can also define more complex relationships, like the Vincenty formula, that accounts for the Earth's oblateness.

from numba import cfunc, types, carray
import math

# Define the dimension as 2 for latitude and longitude
ndim = 2

# Signature for the custom metric
signature = types.float32(
    types.CPointer(types.float32),
    types.CPointer(types.float32))

# WGS-84 ellipsoid parameters
a = 6378137.0  # major axis in meters
f = 1 / 298.257223563  # flattening
b = (1 - f) * a  # minor axis

def vincenty_distance(a_ptr, b_ptr):
    a_array = carray(a_ptr, ndim)
    b_array = carray(b_ptr, ndim)
    lat1, lon1, lat2, lon2 = a_array[0], a_array[1], b_array[0], b_array[1]
    L, U1, U2 = lon2 - lon1, math.atan((1 - f) * math.tan(lat1)), math.atan((1 - f) * math.tan(lat2))
    sinU1, cosU1, sinU2, cosU2 = math.sin(U1), math.cos(U1), math.sin(U2), math.cos(U2)
    lambda_, iterLimit = L, 100
    while iterLimit > 0:
        iterLimit -= 1
        sinLambda, cosLambda = math.sin(lambda_), math.cos(lambda_)
        sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
        if sinSigma == 0: return 0.0  # Co-incident points
        cosSigma, sigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda, math.atan2(sinSigma, cosSigma)
        sinAlpha, cos2Alpha = cosU1 * cosU2 * sinLambda / sinSigma, 1 - (cosU1 * cosU2 * sinLambda / sinSigma) ** 2
        cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha if not math.isnan(cosSigma - 2 * sinU1 * sinU2 / cos2Alpha) else 0  # Equatorial line
        C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha))
        lambda_, lambdaP = L + (1 - C) * f * (sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM ** 2)))), lambda_
        if abs(lambda_ - lambdaP) <= 1e-12: break
    if iterLimit == 0: return float('nan')  # formula failed to converge
    u2 = cos2Alpha * (a ** 2 - b ** 2) / (b ** 2)
    A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
    B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))
    deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ** 2) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ** 2) * (-3 + 4 * cos2SigmaM ** 2)))
    s = b * A * (sigma - deltaSigma)
    return s / 1000.0  # Distance in kilometers

# Example usage:
index = Index(ndim=ndim, metric=CompiledMetric(
    pointer=vincenty_distance.address,
    kind=MetricKind.Haversine,
    signature=MetricSignature.ArrayArray,
))

Integrations & Users

Citations

@software{Vardanian_USearch_2023,
doi = {10.5281/zenodo.7949416},
author = {Vardanian, Ash},
title = {{USearch by Unum Cloud}},
url = {https://github.com/unum-cloud/usearch},
version = {2.14.0},
year = {2023},
month = oct,
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

usearch-2.14.0-cp312-cp312-win_arm64.whl (263.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

usearch-2.14.0-cp312-cp312-win_amd64.whl (283.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

usearch-2.14.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp312-cp312-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp312-cp312-macosx_11_0_arm64.whl (366.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

usearch-2.14.0-cp312-cp312-macosx_10_9_x86_64.whl (381.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

usearch-2.14.0-cp312-cp312-macosx_10_9_universal2.whl (710.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.14.0-cp311-cp311-win_arm64.whl (262.1 kB view details)

Uploaded CPython 3.11 Windows ARM64

usearch-2.14.0-cp311-cp311-win_amd64.whl (281.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

usearch-2.14.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp311-cp311-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp311-cp311-macosx_11_0_arm64.whl (364.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

usearch-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl (377.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

usearch-2.14.0-cp311-cp311-macosx_10_9_universal2.whl (704.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.14.0-cp310-cp310-win_arm64.whl (261.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

usearch-2.14.0-cp310-cp310-win_amd64.whl (281.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

usearch-2.14.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp310-cp310-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp310-cp310-macosx_11_0_arm64.whl (363.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

usearch-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl (375.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

usearch-2.14.0-cp310-cp310-macosx_10_9_universal2.whl (700.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.14.0-cp39-cp39-win_arm64.whl (262.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

usearch-2.14.0-cp39-cp39-win_amd64.whl (277.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

usearch-2.14.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp39-cp39-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp39-cp39-macosx_11_0_arm64.whl (363.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

usearch-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl (376.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

usearch-2.14.0-cp39-cp39-macosx_10_9_universal2.whl (701.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.14.0-cp38-cp38-win_amd64.whl (280.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

usearch-2.14.0-cp38-cp38-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp38-cp38-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp38-cp38-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp38-cp38-macosx_11_0_arm64.whl (363.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

usearch-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl (376.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

usearch-2.14.0-cp38-cp38-macosx_10_9_universal2.whl (700.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

usearch-2.14.0-cp37-cp37m-win_amd64.whl (281.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

usearch-2.14.0-cp37-cp37m-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

usearch-2.14.0-cp37-cp37m-musllinux_1_2_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

usearch-2.14.0-cp37-cp37m-manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

usearch-2.14.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

usearch-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl (374.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file usearch-2.14.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 263.2 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 f59a50964f1a2bd457adea1b35644fad4e15d05499d86a5f323d7c92e50185b6
MD5 57b5753f437768133013b1de490587d1
BLAKE2b-256 baca31efa3416a04c18e24cc05aa06c1e09487dd13a4e17e757800606809bce6

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 283.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 610d886732f3bbafbe5e840525ab10711c376d686a703240e3ce721a636fc12b
MD5 d55e9217986fde3e5f79541a18a1f80f
BLAKE2b-256 d6053154e5d365fb518fd846ba88fc85f9cd87ad96541bdcf2ce55fce6652003

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 afb98f7cf8a6e8a849150a39d767c25c5e74d049d03dc96dc630863902163a84
MD5 04522a4e4d0f07d5309fbaf018405927
BLAKE2b-256 8638495db24f48ceab3028dbd4584a7abd265c68f9a568f003b7860cef591049

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5c298f73a60f96a50661e7815e9f1917b80cfd3cb3ba17724cd2a7974bf3db4e
MD5 116f5044549e37918cdf8fd193c4844c
BLAKE2b-256 f9b1f177a828256e2595bdfdc658fdd73ffad840d26bcbc0191f6d5d1062f824

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 51f4a8c88c0f23cd9e8e2da56cb63e1e605918af8cd3bea5e9b0200188c1c1b6
MD5 4ca6b1f0f2007c845787243bea0ae4d9
BLAKE2b-256 ad6b2d225adc6c4cc06c3fb7f0cd0a0600122f117c32e3dc41c92735cbe07c02

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2c27acd1ae6d2cc79e7909058562ae55ceb919a97af6f9fd5d769e3dc929aa60
MD5 eb9797c8d3f6f1c3d1d38c52485bd77b
BLAKE2b-256 de4baab1a4270abea0daa7a8f025d27bbfb34da41aaaa4b3487d407389387711

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ff38f82dd452875d9b2e07d774f86a47cadcf910b4caa76a78c05084efdfd06
MD5 79350026637ac326237ac5b5752cf26f
BLAKE2b-256 14f4dc2fe99e9a1fb786edb9a7b76748a05d0e4d05c09619f88d79bc8ddf6348

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c2c68e6d205c6a8c16ee6af4c8e09a65cfbef52a6fe6b9aa2c9b1946dcc9970
MD5 3726f3734e1990722bf7875bd0ce4807
BLAKE2b-256 246616a5f91707e2faf3ac7ab27d742b53247647e4a8c05cbc87cb32e1c04b67

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 290f7040833b4ff4e0182cd4d7f9c26ba98d43f54a8df512ff925f0cf636051b
MD5 261ce9ee890af4f924a5c151da8e9109
BLAKE2b-256 ba2d7b281e8a47cd6a9bf46554ed8d2a9117f2b5dd1abf7922dfb18dc8c556a9

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 262.1 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 0f4343d30b936280dea119fecca2ab825c4118ae42bf7bf682f0dc64e870e716
MD5 28fd8361db22a4ec5aef462080ee9b85
BLAKE2b-256 3a51f943fb593e215b8bc9c03cafbfc21973de489397f66809911f51ccd4e8a7

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 281.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae5af33960cbf46f7133417bacaf35273b71b3974e40a259ad18f8c1580b77c0
MD5 d63af5e8ef1f6c5f6d441927cf55eb50
BLAKE2b-256 441dab643bb6c801248c41df66ea216e81714d51749c51a38eab70d34c60ae5f

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 688b8693378c39fcfec54593a08a6ffa905cb4c60cf7bc7be0f05bef8fd5cd79
MD5 bde552c4ae52574c7c66152a4480b33c
BLAKE2b-256 8772fd55703fdf0f47f644a80aac15418d3893233f4ffa64f0a01361ddbca015

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fef2b58ce1891ebdf8c5a10ea330a5eb62ead482dfc85fb68c4ef2f7045a3b0c
MD5 82964be631df523e5480f06c58aeb813
BLAKE2b-256 223d0733928b43de8dd37788fde6bec4ea98255ed98b25cbda68a6e1321bdabd

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dd16b87467088785062b4491aa428e549cea18efe2d0c2122aaedd3540e61969
MD5 b5c6ac92b2b8853aaf780a4b49bed6ab
BLAKE2b-256 3fdbf99d1e6a31be07e4037878326f4cffffa93e6315586b51f85c1fc30a4182

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 170ff8d97285a0679f5a14f32c72fc507f3d9227073c874d80b5040fa42c23ba
MD5 502ba0b78cb308787bc40dc6ad3beda9
BLAKE2b-256 72b4de152d16f0ea8b9051392f9438c0f9319ee42f1aee3dcf84dfbc3e33eb82

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53db1ab686c0a70cf828d1566cc79d65e0fbe10637fc0db1e176d4cfe586a27c
MD5 48bd46b507a9f8415f1dd79f5ab40854
BLAKE2b-256 977f68b1e53438ceb88bf933a392f9c7a6752e87008d65e6bd0642cb5286dd7f

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2454f7b73b3ba955e01e3500477aaf45636527f8ef41c90064e042f0e503c884
MD5 bd5c304a9d4d710314e83d57e5974f3c
BLAKE2b-256 dad6f53f7706fe2c2022d5a3716689de280338fec4332c37266ccb018f5794f9

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6cbc5a2e511f212dea10e799b60b9639fae4c0eddd3bef36b62a24d03b3157ac
MD5 ea1067c1ced0192f182ccf751599f454
BLAKE2b-256 b6e3a1c25e540fa805d33562e7919481a5df901a406fe905c8e280fb45edb658

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 261.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 1de0bc99cca6e8ff67f6fed85bc9a82ab8542e4eeed32a754bf76700bdfa32bc
MD5 f15bb1d48ef1641b0a291d7ad317beb9
BLAKE2b-256 6fc4481aebb1481590a2fccfe6312457fa0f9f6258ace50ebaf17025741ed995

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 281.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 78f0acff1ca99eeda1304f3bd919b6fa42c5d7864ac424f3195846f1eff1bb33
MD5 7de629158f0f933dc041e720c8315a62
BLAKE2b-256 e3ace6e749271041b218f1929867a1fa70c7f59e4e4f4f0d9d1feb8dcd59e873

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d73a4c63688696f217992e00962a7c93a46f823b9fc99b2733f8a44470b87b0d
MD5 17d7841ed445bb87486283ba59ca4ff5
BLAKE2b-256 d51a14397058ee4a02669445fa6f7cb4eb9fa8816be10fd3b9c581613f9cd46e

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fdc09e961b281ed7622e4202cf4260ae043df10b27be2537f7b4d5ae1d4de7c3
MD5 a0881192cf58417ee6151c67ebc731a1
BLAKE2b-256 2c7a100de85aa1ee36e11dce3f794f7b4e72f0b3d68bd14555fdd9c15665892b

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2b619b6e84a3ba16d14932dbe3c0af2d03b21cc57e12695b871cea1735e42f98
MD5 104095c3638e79d63a9d9aa745c01a54
BLAKE2b-256 be3e8eae798e4a4b38cb064fcbb6090f389f8ff27576b84eb3586db7788f51d6

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7319f70f0e98b2a08afa9e3c4c8acb01b48691388702bf6bc5c10fa534d4fddf
MD5 d908f161e8a60c67cbb0f2750b9779e2
BLAKE2b-256 9573dda1b3baa8cd877466ece35a25ff9a3e9a0e593ceb2d9f20ddb289a1d39c

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5edc4de8c71e860f52d449672e89be22fa2c8bbd318caaac747ec05bfdc413b
MD5 b7d5f503e26a8c2c662a7865256749d3
BLAKE2b-256 a82d7e30169dc73efcf13b3d96bcfe067657d5aa5faf9550fbeccc43e297bfee

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfbdbae7f80e1e4cccd3ee1e9091d0c5894ed29d42ec0977286020c0f19854d8
MD5 58a52b4013f15e010a42d10389cdb969
BLAKE2b-256 71f5024f1598a820cc94a106485e8d8a8a67b147465347ad655e6812cda0d313

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7f875f160463ccfcd120a636555f0821b3bd7bdb304ae936f30d603ec31ab0f7
MD5 cf5772cf59fef09d1dbe9d4833eaf55b
BLAKE2b-256 f67e230db02465a09c70af49c71d8443e049a00647c8c35867b2d893b2e2610e

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 262.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 60fcc9cc45e7a60e127d1ba3f5c3e7f2d5f5cedcbeff6b1c69b0aaf962650cfc
MD5 6a62558217ae73fa64ff076f356307fa
BLAKE2b-256 aabdadf26c76695995803c384f662506c544289c5f3ff4345347646650652051

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 277.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 efed6f3f43d920f88d0b548bd542eda9f93fe1f4e2d7ff37af93e2c7c808124d
MD5 57b6e7545bde1d74eaa21a9229077d68
BLAKE2b-256 84073addc47fea60dbe1ae0d3a2d918361783597ed35e898d47d06f8ed57ff27

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36d8541b1d4f9fabd7af7c47dcebfd0bd8d2b013244ae8359aa4763efdb8edf5
MD5 8c27606916ef49b483c6225f57f670e4
BLAKE2b-256 30040451408fd3d61b037ce77fcd0495f7070040358f1b27ed66412a360e4f4a

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c7ba8e6228dd0bd310fdd45b13a04d8ca98156881db100e7d57dcf2293bbd2c3
MD5 40a395d0db93cd181f789600f71efec9
BLAKE2b-256 2069d553b1ab956089749dc53b56d5c98b59e6500eb4e06836ba7ea0bac03708

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9f216d1dd5c3301f2178de4410f5d9eff06cb5675aef37531b5ba2489561e298
MD5 8c37e5d72419ff8d62a81872c214eb3b
BLAKE2b-256 937fa176a87a2bb1dd673fc0306a56bf907fc406e859b81df94136cf6aeba499

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7b27bf36f9bb88034976d1f91792b0142592fe8a97530f81c5f82d241e0827aa
MD5 be142a90dc5bbd0273d332da84e14f21
BLAKE2b-256 9b48e195e9e57f45d6529e213a8e225e6d9e11eafab0300ef1bfc3974f907fb6

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91b934eebd143ccc0072778c361349bbd06e75f3cf5b0be47fff032109d56837
MD5 d65248cb31fb4038523512f0893b7ee3
BLAKE2b-256 229296b27e7f6704b303ee79468f75be8eb50033539c010378f334c02a3ea0fe

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42fdc3a368e3076f8007085776fb85b9d6becdf8f922dba5656f9933d10e530f
MD5 21a0a2952a62003bd6f0abea31bdac74
BLAKE2b-256 79dbc7fcd5a6abbffc3d47beb708b338c4b31a34bd8a505dec34ce5cce3f583a

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7024e4634c23d334c824b675166fe6ea454b42c9dc3543e7f749a81bac2215fc
MD5 fd3c81477519c251c1ecd426bfddf583
BLAKE2b-256 cbd724ca2c4436a970ceea866a784ba6b0abd4b87fce93c139d52970566eb98e

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 280.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8f95e196e10923d6b1fbb98bd28cfd463ead50a8069e9d0f75704047d50466fe
MD5 982aed2d3c47939f301f03e69e7bf0fa
BLAKE2b-256 1454c3a13aadb4a367d47ebca45135c93aea2c4bd6ca91bb5095dd31f343012a

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1f2707e702fcc8bb93faee496642b825354ba49a27d60452a5d05bddf0a85c3d
MD5 7c52565a09c3625dde385f09ec450c53
BLAKE2b-256 f1ed63b64b86499cf131eca59ef91b23ac7fcaf8a65d230145c87b0b7c0fc092

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 dc14514f9af38467d0c27d405f98ffbe6fb6c30aa1d5a91a155e0ec205efb209
MD5 659db4ccd7a4c0bcf4201922359e5813
BLAKE2b-256 2b131d0a5c460c7ec2ed1ead415fad219bcf3fe70e28248f59899cf8146fda5b

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 09c33800ad522ca2b94acd92f207b91070735e143f9b0353ef901fad39ea31b7
MD5 a1c005b20183e7e994a9e9593e7e98b0
BLAKE2b-256 c8b81290ecc15fe60f4c22bb2e9c5ab761a60dfabaffdc7b83fa798d49c4bbda

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0c6e44804d98b3fef717b89f89692a0c36038a6336cf801e85e7761150232610
MD5 e53b7dae1135277e717c5ab3c4812d7e
BLAKE2b-256 9113f4e11d1f4c146600dc815a719485508ee4a173715540a508d27e9938392c

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11f25cc1d8b274dbac29a404cfdb6e7604d4bba30b502966333c857111e4b74a
MD5 2919d8b3cb8cecaadb836b2e712df459
BLAKE2b-256 e1613fb0073f493610f44098cb720a62a597bb45a81b1e0a545d77342a6e9045

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94664418f0d802e6d3ef9809a5fd133338617ab2bb209342931f3becca2e0e9e
MD5 2ea38032a47711244bd2a8844bac5f25
BLAKE2b-256 55a21fb6a1e8a8873dc365982b8a55fd50a8a8c955d12940f564cec2128883d2

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4a4fae4cc09635351d0501827350b983a8011a1393ade6bc63c8b1039528da7b
MD5 5bd3134338fad8f67ad38289867b19b3
BLAKE2b-256 fdaefb6d52ce2091c8ea7e58a89ce6c88c7d61d03d70f1e43f4acff27c08f4e9

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: usearch-2.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 281.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0fd4a6bde4bd22e064cd18475936b52d498c745583c6c2dc6a753e72b60051e5
MD5 85969d44cfded1e1579a5e573f821f9a
BLAKE2b-256 c5e630a4a22cf04385fa3822043439abe70ccdd375cc6df2417d4173e91814c4

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 06e9a085812b37d9e39abeefc6e38c4eb8b81b3ac5be7fbb20ad1c24bbf3fb41
MD5 3d0d5aff307cc7c5534098ace677a302
BLAKE2b-256 636891237db9c34b7b96707167b103a979f0b993293e2669643d7c66070e0680

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e6a843b31e52b3d803c067d13b29784098d0d3d77161f9d1f5a9d1dda5fd5ca1
MD5 e6a7d080f72ec4e182fb1950756bc12c
BLAKE2b-256 b16ac9b442281e13c8fe6bd5d48babbf983863d54b40a2342b0f31b3069a335a

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a5b4884552a26097fcefd6b3db30418cdf0252893963360ff67b3eb68b7b54a8
MD5 19b58e74d26092ed95f7ff0871200407
BLAKE2b-256 4ce75a7734bc62264a50823fa6d19fd4ed81ec48b737aa2bd1efa0b7da8146fd

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 364ae5a7ac5ceaf3ed326d54bc7bd102bfe2fe31abdfdf254ac2b8a2fa6a0c9e
MD5 c627aa06d3513f0778c72d28fbf3e77f
BLAKE2b-256 7a6319811e7cd1be6bbe83e3ce13ada8ad002b4e3c803548cab0b1e8414579fc

See more details on using hashes here.

File details

Details for the file usearch-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for usearch-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5b6a8aac114b6e4bcef7383466f3d1e4d6b6d79d8f2d91999f71d356be4054a
MD5 37566434647bfd6bebdfa8b9fbdbf5c4
BLAKE2b-256 dd3b63049ad7ce6494b350d5fa7e8fc4cb5da05215c26711522f33ce6086acb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page