Skip to main content

Dataclass with data validation.

Project description

ValidatedDC

PyPI version Build Status Coverage Status Language grade: Python Total alerts PyPI - Python Version

Dataclass with data validation. Checks the value of its fields by their annotations.

Capabilities

ValidatedDC is a regular Python dataclass.

  1. Support for standard types and custom Python classes.
  2. Support for some aliases from the typing module, namely: Any, List, Literal, Optional, Union. These aliases can be embedded in each other.
  3. When initializing an instance of a class, you can use the value of the field dict instead of the ValidatedDC instance specified in the field annotation (useful, for example, when retrieving data via api).
  4. Data validation occurs immediately after an instance is created, and can also be run by the is_valid() function at any time.
  5. The get_errors() function will show the full traceback of errors in the fields, including errors of nested classes.

See detailed in the examples folder.

Installation

pip install validated-dc

Python versions support

Versions 3.7, 3.8 and 3.9 are currently supported.

To work with version python 3.7 you need to install:

pip install typing_extensions

Quick example

from dataclasses import dataclass
from typing import List, Union

from validated_dc import ValidatedDC, get_errors, is_valid


# Some combinations of List and Union

@dataclass
class Foo(ValidatedDC):
    value: Union[int, List[int]]


@dataclass
class Bar(ValidatedDC):
    foo: Union[Foo, List[Foo]]


# --- Valid input ---

foo = {'value': 1}
instance = Bar(foo=foo)
assert get_errors(instance) is None
assert instance == Bar(foo=Foo(value=1))

foo = {'value': [1, 2]}
instance = Bar(foo=foo)
assert get_errors(instance) is None
assert instance == Bar(foo=Foo(value=[1, 2]))

foo = [{'value': 1}, {'value': 2}]
instance = Bar(foo=foo)
assert get_errors(instance) is None
assert instance == Bar(foo=[Foo(value=1), Foo(value=2)])

foo = [{'value': [1, 2]}, {'value': [3, 4]}]
instance = Bar(foo=foo)
assert get_errors(instance) is None
assert instance == Bar(foo=[Foo(value=[1, 2]), Foo(value=[3, 4])])


# --- Invalid input ---

foo = {'value': 'S'}
instance = Bar(foo=foo)
assert get_errors(instance)
assert instance == Bar(foo={'value': 'S'})
# fix
instance.foo['value'] = 1
assert is_valid(instance)
assert get_errors(instance) is None
assert instance == Bar(foo=Foo(value=1))

foo = [{'value': [1, 2]}, {'value': ['S', 4]}]
instance = Bar(foo=foo)
assert get_errors(instance)
assert instance == Bar(foo=[{'value': [1, 2]}, {'value': ['S', 4]}])
# fix
instance.foo[1]['value'][0] = 3
assert is_valid(instance)
assert get_errors(instance) is None
assert instance == Bar(foo=[Foo(value=[1, 2]), Foo(value=[3, 4])])


# --- get_errors() ---

foo = {'value': 'S'}
instance = Bar(foo=foo)
print(get_errors(instance))
# {
#   'foo': [
#       # An unsuccessful attempt to use the dictionary to create a Foo instance
#       InstanceValidationError(
#           value_repr="{'value': 'S'}",
#           value_type=<class 'dict'>,
#           annotation=<class '__main__.Foo'>,
#           exception=None,
#           errors={
#               'value': [
#                   BasicValidationError(  # because the str isn't an int
#                       value_repr='S', value_type=<class 'str'>,
#                       annotation=<class 'int'>, exception=None
#                   ),
#                   BasicValidationError(  # and the str is not a list of int
#                       value_repr='S', value_type=<class 'str'>,
#                       annotation=typing.List[int], exception=None
#                   )
#               ]
#           }
#       ),
#       BasicValidationError(  # the dict is not a list of Foo
#           value_repr="{'value': 'S'}",
#           value_type=<class 'dict'>,
#           annotation=typing.List[__main__.Foo],
#           exception=None
#       )
#   ]
# }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validated-dc-1.3.3.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

validated_dc-1.3.3-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file validated-dc-1.3.3.tar.gz.

File metadata

  • Download URL: validated-dc-1.3.3.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for validated-dc-1.3.3.tar.gz
Algorithm Hash digest
SHA256 d4a2e018b5d42a641e48addc9d8bd2804d38046a62ba112eca7c03cae98f2335
MD5 2ad895ab4b1a25ffd242bf3ccb42e614
BLAKE2b-256 36b9509310a15ac9c1e6bca9bd59a62ff924a3a2cd296885b37cf7c2c2fe0cdf

See more details on using hashes here.

File details

Details for the file validated_dc-1.3.3-py3-none-any.whl.

File metadata

  • Download URL: validated_dc-1.3.3-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for validated_dc-1.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6f4c849c23cdf6a21b95828da141f0a703fadd7e3f5252857a4b84b9b8196c21
MD5 5e4ec74c574d5dd1a3ed3e306055b5e3
BLAKE2b-256 325c3c1ccdda94efd64cb3c3c0e1d4ccebab5848f64f12f3bb150b571ab55df3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page