Skip to main content

No project description provided

Project description

Vectara Python SDK

fern shield pypi

The Vectara Python SDK provides convenient access to the Vectara API for building powerful AI applications.


Installation

Install the library via pip:

pip install vectara

Getting Started

API Generated Documentation

API reference documentation is available here.

Examples

Complete examples can be found in the Getting Started notebooks.

Usage

First, create an SDK client.
You can use either an api_key or OAuth (client_id and client_secret) for authentication.

from vectara import Vectara

# creating the client using API key
client = Vectara(
    api_key="YOUR_API_KEY"
)
    
# creating the client using oauth credentials
client = Vectara(
    client_id="YOUR_CLIENT_ID",
    client_secret="YOUR_CLIENT_SECRET",
)  

If you don't already have a corpus, you can create it using the SDK:

client.corpora.create(name="my-corpus", key="my-corpus-key")

Add a document to a corpus

You can add documents to a corpus in two formats: structured or core.
For more information, refer to the Indexing Guide.

Here is an example for adding a Structured document

from vectara import StructuredDocument, StructuredDocumentSection
client.documents.create(
    corpus_key="my-corpus-key",
    request=StructuredDocument(
        id="my-doc-id",
        type="structured",
        sections=[
          StructuredDocumentSection(
              id="id_1",
              title="A nice title.",
              text="I'm a nice document section.",
              metadata={'section': '1.1'}
          ),
          StructuredDocumentSection(
              id="id_2",
              title="Another nice title.",
              text="I'm another document section on something else.",
              metadata={'section': '1.2'}
          ),
        ],
        metadata={'url': 'https://example.com'}
    ),
)

And here is one with Core document:

from vectara import CoreDocument, CoreDocumentPart

client.documents.create(
    corpus_key="my-corpus-key",
    request=CoreDocument(
        id="my-doc-id",
        type="core",
        document_parts=[
            CoreDocumentPart(
                text="I'm a first document part.",
                metadata={'author': 'Ofer'}
            )
            CoreDocumentPart(
                text="I'm a second document part.",
                metadata={'author': 'Adeel'}
            )
        ],
        metadata={'url': 'https://example.com'}
    ),
)

Upload a file to the corpus

In addition to creating a document as shown above (using StructuredDocument or CoreDocument), you can also upload files (such as PDFs or Word Documents) directly to Vectara. In this case Vectara will parse the files automatically, extract text and metadata, chunk them and add them to the corpus.

Using the SDK you need to provide both the file name, the binary content of the file, and the content_type, as follows:

filename = "examples.pdf"
with open(filename, "rb") as f:
    content = f.read()

client.upload.file(
    'my-corpus-key', 
    file=content,
    filename=filename,
    metadata={"author": "Adeel"}
)

Querying the corpora

With the SDK it's super easy to run a query from one or more corpora. For more detailed information, see this Query API guide

A query uses two important objects:

  • The SearchCorporaParameters object defines parameters for search such as hybrid search, metadata filtering or reranking
  • The GenerationParameters object defines parameters for the generative step.

Here is an example query for our corpus above:

search = SearchCorporaParameters(
        corpora=[
            KeyedSearchCorpus(
                corpus_key="my-corpus-key",
                metadata_filter="",
                lexical_interpolation=0.005,
            )
        ],
        context_configuration=ContextConfiguration(
            sentences_before=2,
            sentences_after=2,
        ),
        reranker=CustomerSpecificReranker(
            reranker_id="rnk_272725719"
        ),
    )
generation = GenerationParameters(
        response_language="eng",
        enable_factual_consistency_score=True,
    )

client.query(
    query="Am I allowed to bring pets to work?",
    search=search,
    generation=generation
    
)

Using Chat

Vectara chat provides a way to automatically store chat history to support multi-turn conversations.

Here is an example of how to start a chat with the SDK:

from vectara import SearchCorporaParameters    
search = SearchCorporaParameters(
        corpora=[
            KeyedSearchCorpus(
                corpus_key="test-corpus",
                metadata_filter="",
                lexical_interpolation=0.005,
            )
        ],
        context_configuration=ContextConfiguration(
            sentences_before=2,
            sentences_after=2,
        ),
        reranker=CustomerSpecificReranker(
            reranker_id="rnk_272725719"
        ),
    )
generation = GenerationParameters(
        response_language="eng",
        citations=CitationParameters(
            style="none",
        ),
        enable_factual_consistency_score=True,
    )
chat = ChatParameters(store=True)

session = client.create_chat_session(
    search=search,
    generation=generation,
    chat_config=chat,
)

response_1 = session.chat(query="Tell me about machine learning.")
print(response_1.answer)
response_2 = session.chat(query="what is generative AI?")
print(response_2.answer)

Note that we used the create_chat_session with chat_config set for storing chat history. The resulting session can then be used for turn-by-turn chat, simply by using the chat() method of the session object.

Streaming

The SDK supports streaming responses for both query and chat. When using streaming, the response will be a generator that you can iterate.

Here's an example of calling query_stream:

Streaming the query response

from vectara import SearchCorporaParameters
search = SearchCorporaParameters(
    corpora=[...],
    ...
)
generation = GenerationParameters(...)

response = client.query_stream(
    query="Am I allowed to bring pets to work?",
    search=search,
    generation=generation
    
)
for chunk in response:
    if chunk.type == 'generation_chunk':
        print(chunk.generation_chunk)
    if chunk.type == "search_results":
        print(chunk.search_results)

And streaming the chat response:

from vectara import SearchCorporaParameters

search = SearchCorporaParameters(
    corpora=[...],
    ...
)
generation = GenerationParameters(...)
chat_params = ChatParameters(store=True)

session = client.create_chat_session(
    search=search_params,
    generation=generation_params,
    chat_config=chat_params,
)

response = session.chat_stream(query="Tell me about machine learning.")
for chunk in response:
    if chunk.type == 'generation_chunk':
        print(chunk.generation_chunk)
    if chunk.type == "search_results":
        print(chunk.search_results)   
    if chunk.type == "chat_info":
        print(chunk.chat_id)
        print(chunk.turn_id)

Additional Functionality

There is a lot more functionality packed into the SDK, matching all API endpoints that are available in Vectara including for things like managing documents, corpora, api keys, users, and even for query history retrieval.

Exception Handling

When the API returns a non-success status code (4xx or 5xx response), a subclass of the following error will be thrown.

from vectara.core.api_error import ApiError

try:
    client.query(...)
except ApiError as e:
    print(e.status_code)
    print(e.body)

Pagination

Paginated requests will return a SyncPager or AsyncPager, which can be used as generators for the underlying object.

response = client.corpora.list(
    limit=1,
)
for item in response:
    yield item
# alternatively, you can paginate page-by-page
for page in response.iter_pages():
    yield page

Advance Usage

For more information related to customization, Timeouts and Retries in the SDK, refer to the Advanced Usage Guide

Using the SDK in Different Contexts

The Python library can be used in a number of environments with different requirements:

  1. Notebooks - using implicit configuration from a users home directory
  2. Docker Environments - using ENV variables for configuration
  3. Complex Applications - allowing explicit configuration from mutable stores (e.g. RDBMS / NoSQL)

For more details, refer to the Configuration Guide

Author

👤 Vectara

🤝 Contributing

Contributions, issues and feature requests are welcome!
Feel free to check issues page. You can also take a look at the contributing guide.

Show your support

Give a ⭐️ if this project helped you!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vectara-0.4.0.tar.gz (186.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

vectara-0.4.0-py3-none-any.whl (373.2 kB view details)

Uploaded Python 3

File details

Details for the file vectara-0.4.0.tar.gz.

File metadata

  • Download URL: vectara-0.4.0.tar.gz
  • Upload date:
  • Size: 186.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.18 Linux/6.8.0-1041-azure

File hashes

Hashes for vectara-0.4.0.tar.gz
Algorithm Hash digest
SHA256 7da01f0d282ce9d2f6da6fadbe4b1d4e40a46c1be5c8ad89f5ce047a219cb504
MD5 423370e2d9bdb9755de0b998ee7a2a02
BLAKE2b-256 cc16cfd4cad00dc5687ccf2703ed55b2d52adc86c72337fd470c89daee8b9d22

See more details on using hashes here.

File details

Details for the file vectara-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: vectara-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 373.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.18 Linux/6.8.0-1041-azure

File hashes

Hashes for vectara-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6b6a05bde51c427f0766763c6bf550dd476ca88d990b3f41db1f20742c4567c8
MD5 2f467ea277490174a899f055aa2c4929
BLAKE2b-256 2878bad913ef917eea4bfd9f01dc83fcbdfe0777c97ef109afa1e61d2b246052

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page