Vision Transformers (ViT)
Project description
vision_transformers
A repository for everything Vision Transformers.
Currently Supported Models
-
Image Classification
- ViT Base Patch 16 | 224x224: Torchvision pretrained weights
- ViT Base Patch 32 | 224x224: Torchvision pretrained weights
- ViT Tiny Patch 16 | 224x224: Timm pretrained weights
- Vit Tiny Patch 16 | 384x384: Timm pretrained weights
- Swin Transformer Tiny Patch 4 Window 7 | 224x224: Official Microsoft weights
- Swin Transformer Small Patch 4 Window 7 | 224x224: Official Microsoft weights
- Swin Transformer Base Patch 4 Window 7 | 224x224: Official Microsoft weights
- Swin Transformer Large Patch 4 Window 7 | 224x224: No pretrained weights
Quick Setup
Stable PyPi Package
pip install vision-transformers
OR
Latest Git Updates
git clone https://github.com/sovit-123/vision_transformers.git
cd vision_transformers
Installation in the environment of your choice:
pip install .
Importing Models and Usage
If you have you own training pipeline and just want the model
Replace num_classes=1000
with you own number of classes.
from vision_transformers.models import vit
model = vit.vit_b_p16_224(num_classes=1000, pretrained=True)
# model = vit.vit_b_p32_224(num_classes=1000, pretrained=True)
# model = vit.vit_ti_p16_224(num_classes=1000, pretrained=True)
from vision_transformers.models import swin_transformer
model = swin_transformer.swin_t_p4_w7_224(num_classes=1000, pretrained=True)
# model = swin_transformer.swin_s_p4_w7_224(num_classes=1000, pretrained=True)
# model = swin_transformer.swin_b_p4_w7_224(num_classes=1000, pretrained=True)
# model = swin_transformer.swin_l_p4_w7_224(num_classes=1000)
If you want to use the training pipeline
- Clone the repository:
git clone https://github.com/sovit-123/vision_transformers.git
cd vision_transformers
- Install
pip install .
From the vision_transformers
directory:
- If you have no validation split
python tools/train_classifier.py --data data/diabetic_retinopathy/colored_images/ 0.15 --epochs 5 --model vit_ti_p16_224
-
In the above command:
-
data/diabetic_retinopathy/colored_images/
represents the data folder where the images will be inside the respective class folders -
0.15
represents the validation split as the dataset does not contain a validation folder
-
-
If you have validation split
python tools/train_classifier.py --train-dir data/plant_disease_recognition/train/ --valid-dir data/plant_disease_recognition/valid/ --epochs 5 --model vit_ti_p16_224
- In the above command:
--train-dir
should be path to the training directory where the images will be inside their respective class folders.--valid-dir
should be path to the validation directory where the images will be inside their respective class folders.
All Available Model Flags for --model
vit_b_p32_224
vit_ti_p16_224
vit_ti_p16_384
vit_b_p16_224
swin_b_p4_w7_224
swin_t_p4_w7_224
swin_s_p4_w7_224
swin_l_p4_w7_224
DETR Training
- The datasets annotations should be in XML format. The dataset (according to
--data
flag) given in following can be found here => https://www.kaggle.com/datasets/sovitrath/aquarium-data
python tools/train_detector.py --model detr_resnet50 --epochs 2 --data data/aquarium.yaml
Examples
- ViT Base 16 | 224x224 pretrained fine-tuning on CIFAR10
- ViT Tiny 16 | 224x224 pretrained fine-tuning on CIFAR10
- DETR image inference notebook
- DETR video inference script (Fine Tuning Coming Soon) --- Check commands here
DETR Video Inference Commands
All commands to be executed from the root project directory (vision_transformers
)
- Using default video:
python examples/detr_video_inference.py
- Using CPU only:
python examples/detr_video_inference.py --device cpu
- Using another video file:
python examples/detr_video_inference.py --input /path/to/video/file
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file vision_transformers-0.1.1.0.tar.gz
.
File metadata
- Download URL: vision_transformers-0.1.1.0.tar.gz
- Upload date:
- Size: 38.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
45fc09d90aef2a9f6eaf3cc60cd0e9879a1d5bae868d30352cbf5a1b0f3e4a5d
|
|
MD5 |
32f790ee086c3b1ac110fa1c0755a361
|
|
BLAKE2b-256 |
8845f25edb1b3f643c9f4655fb87d14c07270721dab597bf61096114be7c9c69
|