Skip to main content

Visualize Deep Learning

Project description

[![Build Status](https://travis-ci.org/PaddlePaddle/VisualDL.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/VisualDL)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://github.com/PaddlePaddle/VisualDL/tree/develop/docs)
[![Release](https://img.shields.io/github/release/PaddlePaddle/VisualDL.svg)](https://github.com/PaddlePaddle/VisualDL/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)

<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/images/vs-logo.png" width="60%" />
</p>

## Introduction
VisualDL is a deep learning visualization tool that can help design deep learning jobs.
It includes features such as scalar, parameter distribution, model structure and image visualization.
Currently it is being developed at a high pace.
New features will be continuously added.

At present, most DNN frameworks use Python as their primary language. VisualDL supports Python by nature.
Users can get plentiful visualization results by simply add a few lines of Python code into their model before training.

Besides Python SDK, VisualDL was writen in C++ on the low level. It also provides C++ SDK that
can be integrated into other platforms.


## Component
VisualDL provides following components:

- scalar
- histogram
- image
- audio
- graph
- high dimensional

### Scalar
Scalar can be used to show the trends of error during training.

<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
</p>

### Histogram
Histogram can be used to visualize parameter distribution and trends for any tensor.

<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
</p>

### Image
Image can be used to visualize any tensor or intermediate generated image.

<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_image.gif" width="60%"/>
</p>

### Audio
Audio can be used to play input audio samples or generated audio samples.

### Graph
Graph is compatible with ONNX ([Open Neural Network Exchange](https://github.com/onnx/onnx)),
Cooperated with Python SDK, VisualDL can be compatible with most major DNN frameworks, including
PaddlePaddle, PyTorch and MXNet.

<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/graph_demo.gif" width="60%" />
</p>

### High Dimensional
High Dimensional can be used to visualize data embeddings by projecting high-dimensional data into 2D / 3D.

<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/getting_started/high_dimensional_3d.png" width="60%"/>
</p>

## Quick Start
To give the VisualDL a quick test, please use the following commands.

```
# Install the VisualDL. Preferably under a virtual environment or anaconda.
pip install --upgrade visualdl

# run a demo, vdl_create_scratch_log will create logs for testing.
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080

# visit http://127.0.0.1:8080
```

If you encounter the error `TypeError: __init__() got an unexpected keyword argument 'file'`, that is due to protobuf version is not 3.5+,simply run `pip install --upgrade protobuf` will fix the issue.

If you run into any other issues in above steps, it could be error caused by environmental issues by different python or pip versions.
Following installation methods might fix the issues.

## Install with Virtualenv

[Virtualenv](https://virtualenv.pypa.io/en/stable/) creates isolated Python environment that prevents interfering
by other Python programs on the same machine and make sure Python and pip are located properly.

On macOS, install pip and virtualenv by:
```
sudo easy_install pip
pip install --upgrade virtualenv
```

On Linux, install pip and virtualenv by:
```
sudo apt-get install python3-pip python3-dev python-virtualenv
```

Then create a Virtualenv environment by one of following command:
```
virtualenv ~/vdl # for Python2.7
virtualenv -p python3 ~/vdl for Python 3.x
```

```~/vdl``` will be your Virtualenv directory, you may choose to install anywhere.

Activate your Virtualenv environment by:
```
source ~/vdl/bin/activate
```

Now you should be able to install VisualDL and run our demo:

```
pip install --upgrade visualdl

# run a demo, vdl_create_scratch_log will create logs for testing.
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080

# visit http://127.0.0.1:8080
```

If you still have issues installing VisualDL from Virtualenv, try following installation method.


## Install with Anaconda

Anaconda is a python distribution, with installation and package management tools. Also it is an environment manager,
which provides the facility to create different python environments, each with their own settings.

Follow the instructions on the [Anaconda download site](https://www.anaconda.com/download) to download and install Anaconda.
Download Python 3.6 version command-Line installer.

Create a conda environment named ```vdl``` or anything you want by:
```
conda create -n vdl pip python=2.7 # or python=3.3, etc.
```

Activate the conda environment by:
```
source activate vdl
```

Now you should be able to install VisualDL and run our demo:

```
pip install --upgrade visualdl

# run a demo, vdl_create_scratch_log will create logs for testing.
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080

# visit http://127.0.0.1:8080
```

If you still have issues installing VisualDL, try installing from sources as in following section.


### Install from source
```
#Preferably under a virtualenv or anaconda.
git clone https://github.com/PaddlePaddle/VisualDL.git
cd VisualDL

python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl
```

If there are still issues regarding the ```pip install```, you can still start Visual DL by starting the dev server
[here](https://github.com/PaddlePaddle/VisualDL/blob/develop/docs/how_to_dev_frontend_en.md)


## SDK
VisualDL provides both Python SDK and C++ SDK in order to fit more use cases.


### Python SDK
VisualDL now supports both Python 2 and Python 3.
Below is an example of creating a simple Scalar component and inserting data from different timestamps:

```python
import random
from visualdl import LogWriter

logdir = "./tmp"
logger = LogWriter(logdir, sync_cycle=10000)

# mark the components with 'train' label.
with logger.mode("train"):
# create a scalar component called 'scalars/scalar0'
scalar0 = logger.scalar("scalars/scalar0")

# add some records during DL model running.
for step in range(100):
scalar0.add_record(step, random.random())
```

### C++ SDK
Here is the C++ SDK identical to the Python SDK example above:

```c++
#include <cstdlib>
#include <string>
#include "visualdl/logic/sdk.h"

namespace vs = visualdl;
namespace cp = visualdl::components;

int main() {
const std::string dir = "./tmp";
vs::LogWriter logger(dir, 10000);

logger.SetMode("train");
auto tablet = logger.AddTablet("scalars/scalar0");

cp::Scalar<float> scalar0(tablet);

for (int step = 0; step < 1000; step++) {
float v = (float)std::rand() / RAND_MAX;
scalar0.AddRecord(step, v);
}

return 0;
}
```

## Launch Visual DL
After some logs have been generated during training, users can launch Visual DL application to see real-time data visualization by:


```
visualdl --logdir <some log dir>
```

visualDL also supports following optional parameters:

- `--host` set IP
- `--port` set port
- `-m / --model_pb` specify ONNX format for model file to view graph


### Contribute

VisualDL is initially created by [PaddlePaddle](http://www.paddlepaddle.org/) and
[ECharts](http://echarts.baidu.com/).
We welcome everyone to use, comment and contribute to Visual DL :)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

visualdl-1.3.0-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7mWindows x86-64

visualdl-1.3.0-cp37-cp37m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m

visualdl-1.3.0-cp37-cp37m-macosx_10_7_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

visualdl-1.3.0-cp36-cp36m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.6mWindows x86-64

visualdl-1.3.0-cp36-cp36m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6m

visualdl-1.3.0-cp36-cp36m-macosx_10_7_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

visualdl-1.3.0-cp35-cp35m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.5mWindows x86-64

visualdl-1.3.0-cp35-cp35m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.5m

visualdl-1.3.0-cp35-cp35m-macosx_10_6_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.5mmacOS 10.6+ x86-64

visualdl-1.3.0-cp34-cp34m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.4mWindows x86-64

visualdl-1.3.0-cp34-cp34m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.4m

visualdl-1.3.0-cp34-cp34m-macosx_10_6_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.4mmacOS 10.6+ x86-64

visualdl-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 2.7mu

visualdl-1.3.0-cp27-cp27m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 2.7mWindows x86-64

visualdl-1.3.0-cp27-cp27m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 2.7m

visualdl-1.3.0-cp27-cp27m-macosx_10_6_x86_64.whl (4.4 MB view details)

Uploaded CPython 2.7mmacOS 10.6+ x86-64

File details

Details for the file visualdl-1.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5fb6b9893a9baad8b87e5e1503887aa0085feb2f54682be81024eba74f77c800
MD5 7b57e165dc7702b204b02fc07ce4d534
BLAKE2b-256 122d0dd5ff6b1d00f12192a65a0ae8e93e220077667f975461de2bfd926cccc7

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6523266d356487cfa1701dd08866b8cdf59e41c69b3d20cf6e6765b9439c87f8
MD5 fbb37b36631a06b91640b4ffae11c9a3
BLAKE2b-256 3c239a1239d1447165f181a11782c05fe98a8573d4d028edf226592051e310be

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 fa8cdfa079a7a4bb61b7ad75e6376c0383eafa6c929e2c7f5996afec2e3cb586
MD5 be294f0891c19ac03217846aa05ad2a7
BLAKE2b-256 2f9655413a610c78c152d462478fc1f38ad09691cc5f8c1adda3fc50aab050d8

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ff98316472f115efa32776dc45dc6242c803a7beaff33b5366e4545849aee312
MD5 3b76dceec947089d2f5cc10fb85bb358
BLAKE2b-256 963a4885ec1b1acd19846df53ab68d5e2920b942b75666b3961946eecaa3c279

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6eb6f881f9e8386b707269d631c7efa5c9b53c159d453115c6395e3efb5d93c9
MD5 c7c9f4ef2bad6cb450ef489d90543b3b
BLAKE2b-256 669300054351e9f3447d8337f98412c5adb4b280278e9c530d83f8f6485b0642

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a113f76a3179f85ea416cc554260a3dad6a5e1c97af5bda6bd252225a946bde6
MD5 45801db74404f5fc5d96d6d0b097efe7
BLAKE2b-256 db2dc5b9f1808560205c763fb6af7c829f58c944c25bb8e743edbdc4fedc14cc

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4ed17e39e89328eacc6742cad2bc51f53947a3e7f255e856cb0b5eb07dd6d10e
MD5 b891097282a5be52a7ecd64948be15cc
BLAKE2b-256 eed59a9a0f32ff6c5d7a0b26b820d13c7e1d92c3e3d151b6b3e8f034b25f821d

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03036e0a3281ed2f4520a8cfde9d2ad044ba1ca10b476ed0f4794e101a2fa520
MD5 37036eaee6811bf9e6f862c027aee403
BLAKE2b-256 49af69101325727bcbdc03f7075efc0e9ffe9bfe4c9e1d8278d42a06a7aa8326

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp35-cp35m-macosx_10_6_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp35-cp35m-macosx_10_6_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.5m, macOS 10.6+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for visualdl-1.3.0-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 70116d47c3eaa1c07c6d36d321f4298526ecc5e96b537dfc038ffeb44716a734
MD5 4a3a8c84ffe1ccf1cf0da2998327d960
BLAKE2b-256 06b018fe61908ab432a00a59bac408b21a36885ca6e005e4c38a50c61c2c6a0d

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp34-cp34m-win_amd64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp34-cp34m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.4m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for visualdl-1.3.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 111a3497aa4b3991447328147d451fb7234ed3560b3edb089b45ead925f2a8ec
MD5 b8d436dbc677fac3003eeca333b8044a
BLAKE2b-256 7f56f133d791a44b92ee8599ae875690d585685a2d744f101bdad64c5143e000

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d6a8de55e18d3060b24b687d929817e8b69b0f2cc26df58e6ec1e400fb98a8c8
MD5 3638ea99a901f03681dfb5eb89ac1b93
BLAKE2b-256 ec947dc15696987caf0f92e5d484b9782422b42cded7381df3ef8eba36f687e0

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp34-cp34m-macosx_10_6_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp34-cp34m-macosx_10_6_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.4m, macOS 10.6+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for visualdl-1.3.0-cp34-cp34m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 613646ed08ad4b82d808eada339d06f3ea6f55ecf93401d1e2d6141a9ddf66f9
MD5 71998cec152acf01a64d48cd640c9a33
BLAKE2b-256 71e4c4639585680809e6e7a15617d2065f39aaf51276dc076026840f58eed932

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ebf1f1bd6cfb01bbc49777050511c0fe66b253a1abf43d4130bd1b3d292dfaa2
MD5 8327f6741b214a445d2c7078587802f2
BLAKE2b-256 a17493dd2896a11aacb9594d238a34bbe704ec6948abd8ec592fe7ec716102ac

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.15

File hashes

Hashes for visualdl-1.3.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b2a5945dbee47c29def02b7e80cdd8e0f03ab7b38f4c6d819f2943b8e8c8366f
MD5 bdb64e9b1bb6adb5799593536769cbf6
BLAKE2b-256 6a2156970ff90a8460a56487a240740ce0551940675ceffe578140160cc79850

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 565c96ada245762b54a6938e12ec0f2610956ac52488fda9648754e19ad034fe
MD5 fd0ea3e52f53b740c2b697d50b4f6480
BLAKE2b-256 579097cab163d115453c7fdd8be3741089b46de352d14b11a669187aab5f919f

See more details on using hashes here.

File details

Details for the file visualdl-1.3.0-cp27-cp27m-macosx_10_6_x86_64.whl.

File metadata

  • Download URL: visualdl-1.3.0-cp27-cp27m-macosx_10_6_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 2.7m, macOS 10.6+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for visualdl-1.3.0-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 eb4be1cfa5f8173f68bf8e8dfec9be338fa67b2e52ea93caed7075be2bf3685e
MD5 1fcf1d018dad30ed4186e071bed90274
BLAKE2b-256 e13abfa4c1d77e3630b51826cb9659ddd92449513e167bc5264d923eb15e17e0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page