Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects
Project description
vizard
Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects
Installation
pip install vizard
or
pip install git+https://github.com/Ritvik19/vizard.git
Documentation
Instantiate Vizard Object
The Vizard or VizardIn object holds the DataFrame
along with its configurations including the PROBLEM_TYPE
, DEPENDENT_VARIABLE
, CATEGORICAL_INDEPENDENT_VARIABLES
, CONTINUOUS_INDEPENDENT_VARIABLES
, and TEXT_VARIABLES
import vizard
class config:
PROBLEM_TYPE = 'regression' or 'classification' or 'unsupervised'
DEPENDENT_VARIABLE = 'target_variable'
CATEGORICAL_INDEPENDENT_VARIABLES = [categorical_features]
CONTINUOUS_INDEPENDENT_VARIABLES = [continuous features]
TEXT_VARIABLES = [text features]
viz = vizard.Vizard(df, config)
# for interactive plots use:
viz = vizard.VizardIn(df, config)
Exploratory Data Analysis
After Instatiating the Vizard
object, you can try different plots for EDA
-
Check Missing Values:
viz.check_missing()
-
Count of Missing Values:
viz.count_missing()
-
Count of Unique Values:
viz.count_unique()
-
Count of Missing Values by Group:
viz.count_missing_by_group(class_variable)
-
Count of Unique Values by Group: viz.count_unique_by_group(class_variable)
Target Column Analysis
Based on the type of problem, perform a univariate analysis of target column
viz.dependent_variable()
Segmented Univariate Analysis
Based on the type of problem, preform segmented univariate analysis of all feature columns with respect to the target column
-
Categorical Variables
viz.categorical_variables()
-
Continuous Variables
viz.continuous_variables()
-
Text Variables
viz.wordcloud() viz.wordcloud_by_group() viz.wordcloud_freq()
Bivariate Analysis
Based on the type of variables, perform bivariate analysis on all the feature columns
-
Pairwise Scatter
viz.pairwise_scatter()
-
Pairwise Violin
viz.pairwise_violin()
-
Pairwise Cross Tabs
viz.pairwise_crosstabs()
Trivariate Analysis
Based on the type of variables, perform trivariate analysis on any of the feature columns
-
Trivariate Bubble (Continuous vs Continuous vs Continuous)
viz.trivariate_bubble(x, y, s)
-
Trivariate Scatter (Continuous vs Continuous vs Categorical)
viz.trivariate_scatter(x, y, c)
-
Trivariate Violin (Categorical vs Continuous vs Categorical)
viz.trivariate_violin(x, y, c)
Correlation Analysis
Based on the type of variables, perform correaltion analysis on all the feature columns
-
Correlation Plot
viz.corr_plot()
-
Pair Plot
viz.pair_plot()
-
Chi Square Plot
viz.chi_sq_plot()
Save the plots to PDF using Viz2PDF
You can also save the plots to a pdf file in order to generate an EDA report
The Viz2PDF
object takes in all your Vizard
plots and creates a pdf report out of them
viz = vizard.Vizard(df, config)
viz2pdf = vizard.Viz2PDF('viz_report.pdf')
plots = [
viz.check_missing(),
viz.count_missing(),
viz.count_unique(),
viz.dependent_variable(),
viz.categorical_variables(),
viz.continuous_variables(),
viz.pairwise_scatter(),
viz.pairwise_violin(),
viz.pairwise_crosstabs(),
]
viz2pdf(plots)
Usage
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file vizard-1.3.0.tar.gz
.
File metadata
- Download URL: vizard-1.3.0.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.64.0 importlib-metadata/4.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f814befe890eb786f429221b53535d39d65ee8cf4b4dc5eebbdf79ef1ab8e1f6
|
|
MD5 |
ab881fe7d63b8bf45f51fd02c2cf9d09
|
|
BLAKE2b-256 |
efcc219f944bc18e82a540b9425ca58e395fabe10ef2ddc922d7b1de95f93b60
|