Skip to main content

Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects

Project description

vizard

Intuitive, Interactive, Easy and Quick Visualizations for Data Science Projects

Downloads Downloads Downloads

Installation

pip install vizard

or

pip install git+https://github.com/Ritvik19/vizard.git

Documentation

Instantiate Vizard Object

The Vizard or VizardIn object holds the DataFrame along with its configurations including the PROBLEM_TYPE, DEPENDENT_VARIABLE, CATEGORICAL_INDEPENDENT_VARIABLES, CONTINUOUS_INDEPENDENT_VARIABLES, and TEXT_VARIABLES

import vizard

class config:
    PROBLEM_TYPE = 'regression' or 'classification' or 'unsupervised'
    DEPENDENT_VARIABLE = 'target_variable'
    CATEGORICAL_INDEPENDENT_VARIABLES = [categorical_features]
    CONTINUOUS_INDEPENDENT_VARIABLES = [continuous features]
    TEXT_VARIABLES = [text features]

viz = vizard.Vizard(df, config)
# for interactive plots use:
viz = vizard.VizardIn(df, config)

Exploratory Data Analysis

After Instatiating the Vizard object, you can try different plots for EDA

  • Check Missing Values:

    viz.check_missing()
    
  • Count of Missing Values:

    viz.count_missing()
    
  • Count of Unique Values:

    viz.count_unique()
    
  • Count of Missing Values by Group:

    viz.count_missing_by_group(class_variable)
    
  • Count of Unique Values by Group: viz.count_unique_by_group(class_variable)

Target Column Analysis

Based on the type of problem, perform a univariate analysis of target column

viz.dependent_variable()

Segmented Univariate Analysis

Based on the type of problem, preform segmented univariate analysis of all feature columns with respect to the target column

  • Categorical Variables

      viz.categorical_variables()
    
  • Continuous Variables

      viz.continuous_variables()
    
  • Text Variables

      viz.wordcloud()
    
      viz.wordcloud_by_group()
    
      viz.wordcloud_freq()
    

Bivariate Analysis

Based on the type of variables, perform bivariate analysis on all the feature columns

  • Pairwise Scatter

      viz.pairwise_scatter()
    
  • Pairwise Violin

      viz.pairwise_violin()
    
  • Pairwise Cross Tabs

      viz.pairwise_crosstabs()
    

Trivariate Analysis

Based on the type of variables, perform trivariate analysis on any of the feature columns

  • Trivariate Bubble (Continuous vs Continuous vs Continuous)

      viz.trivariate_bubble(x, y, s)
    
  • Trivariate Scatter (Continuous vs Continuous vs Categorical)

      viz.trivariate_scatter(x, y, c)
    
  • Trivariate Violin (Categorical vs Continuous vs Categorical)

      viz.trivariate_violin(x, y, c)
    

Correlation Analysis

Based on the type of variables, perform correaltion analysis on all the feature columns

  • Correlation Plot

      viz.corr_plot()
    
  • Pair Plot

      viz.pair_plot()
    
  • Chi Square Plot

      viz.chi_sq_plot()
    

Save the plots to PDF using Viz2PDF

You can also save the plots to a pdf file in order to generate an EDA report

The Viz2PDF object takes in all your Vizard plots and creates a pdf report out of them

viz = vizard.Vizard(df, config)
viz2pdf = vizard.Viz2PDF('viz_report.pdf')

plots = [
    viz.check_missing(),
    viz.count_missing(),
    viz.count_unique(),
    viz.dependent_variable(),
    viz.categorical_variables(),
    viz.continuous_variables(),
    viz.pairwise_scatter(),
    viz.pairwise_violin(),
    viz.pairwise_crosstabs(),
]
viz2pdf(plots)

Usage

  1. Classification Case
  2. Regression Case
  3. Text Classification Case
  4. Unsupervised Case
  5. Classification Case (Interactive)
  6. Regression Case (Interactive)
  7. Unsupervised Case (Interactive)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vizard-1.3.0.tar.gz (10.4 kB view details)

Uploaded Source

File details

Details for the file vizard-1.3.0.tar.gz.

File metadata

  • Download URL: vizard-1.3.0.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.64.0 importlib-metadata/4.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for vizard-1.3.0.tar.gz
Algorithm Hash digest
SHA256 f814befe890eb786f429221b53535d39d65ee8cf4b4dc5eebbdf79ef1ab8e1f6
MD5 ab881fe7d63b8bf45f51fd02c2cf9d09
BLAKE2b-256 efcc219f944bc18e82a540b9425ca58e395fabe10ef2ddc922d7b1de95f93b60

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page